5 Best Bitcoin Mining Hardware ASIC Machines (2020 Rigs)

[USA-IL][H] 4 Antminer S4 2.0 TH/s bitcoin miners with cables, Antminer S1, Butterfly Labs Single, power supply [W] Local cash [Chicago & NW burbs]

timestamp and pictures
Selling ≈ 8.2 TH/s worth of bitcoin mining equipment in the following configuration:
4x 2.0 TH/s Antminer S4 bitcoin miners with internal PSUs and power cords
1x 180 GH/s Antminer S1 bitcoin miner
1x 60 GH/s Butterfly Labs "Single" bitcoin miner
1x Dynex DX-520WPS PSU with cables to power the S1 and the BFL single
Everything works as it should within spec for performance, heat, and power consumption. The Antminers' cases show evidence of being moved and re-setup a few times (because they have been) but all issues are cosmetic only. The biggest blemish is a rip in the plastic protective layer over one of the status LCDs on the front of the S4 units.
Asking $1300 for the whole bundle, local cash at pickup or delivery within 50 miles of 60169.
submitted by Skepticalasian to hardwareswap [link] [comments]

Buying an ASIC, cheap power

Good day all,
If I have access to (very) cheap solar power, and have the funds, does it make sense to to buy an ASIC? If so which one is recommended? the https://cointerra.com/product/terraminer-iv-1-6-ths-bitcoin-mine looks nice but I'm not sure what's best.
Thanks,
submitted by fcpk to BitcoinBeginners [link] [comments]

Thinking about buying from ActiveMining, their prices seem the most competitive

Prices for fully loaded units, no expansion modules: Silver - 6.66$/GH , total, $2,559.60 Gold - 7.44$/GH, total, $5,719.60 Platinum - 5.29$/GH, total, $130,239.20
They seem that will be shipping by the end of october and begining of november.
Also after seeing this news,
http://www.easic.com/vmc-uses-easic-to-achieve-24-756-ths-bitcoin-mine
it got me pretty excited for those 28mn chips...
thinking about getting this one:
http://virtualminingcorp.com/shop1/index.php?id_product=21&controller=product#/fh_64ghs_module_a-total_256_gh_s_hashing
Thoughs?
submitted by foradalei to BitcoinMining [link] [comments]

Terraminer for doge?

Hello, I want to start mining and was thinking about ordering the Terraminer since it seems to have a good payout (according to online calculators which say I would be a billionaire in 100 days o_O) I was wondering if it would be worth it, if i can mine doge with it and How much i would earn approximately ? Thanks
http://cointerra.com/product/terraminer-iv-1-6-ths-bitcoin-mine
submitted by primrey to dogemining [link] [comments]

Let's say I buy one of these....

How long does it take to get my money back out of it? https://products.butterflylabs.com/homepage-new-products/1-th-bitcoin-miner.html
How would I calculate it?
http://www.bitcoinx.com/profit/
Total noobish here
submitted by Want2Bit to BitcoinBeginners [link] [comments]

Is this card worth it?

Is this card worth investing? Using a calculator it says that running this card will pay for itself in 4 days. It seems to good to be true. Can you give me a veteran opinion? Products.butterflylabs.com/homepage-new-products/1-th-bitcoin-miner.html
submitted by bethimus to Dogecoinmining [link] [comments]

Looking to upgrade and wanting to see how much I could possibly make a month.

Hey everyone,
Been saving up for quite some time now and I have about 10k available and was looking at some prebuilt equipment to upgrade with. I currently am running my x4 R9 280X and basically want to out perform it greatly! I've seen this pop up a few times: https://cointerra.com/product/terraminer-iv-1-6-ths-bitcoin-mine and was wondering is it worth it? I want to buy two of them but I also need to know how much I will make per month with it on bitcoin and litecoin. Also this is my first premade system I would buy so if you think its not worth it please let me know.
Basically I want to make a pretty good profit of course with these but need some advice. Its estimated to run at 2100 watts each an here its 0.15 kWh USD. So what do you guys think? Have any advice or maybe even better builds? Can someone maybe show me some numbers because I am using the calculators but they seem to be way off so I know I'm doing something wrong haha.
Is it obvious that my little hobby has turn into an addiction to mine more and see if I can make more? xD
submitted by itsmikebroski to BitcoinMining [link] [comments]

Multi apartment clustered cryptocurrency mining rig

So you’ve probably just heard all your classes are online. And now you’re trying to sublet your apartment but no one’s gonna take it. So now you’re gonna be paying at least $1000/month for an empty apartment. I have a proposal that can reduce that cost and possibly turn a profit.
Firstly, we have a very high risk credit market on our hands. The Federal Reserve has been pumping money into the economy and at some point the US dollar will have to inflate while growth stagnates (aka stagflation). During stagflationary periods in the past the price of non-fiat currencies like gold or silver has skyrocketed. Recently cryptocurrencies have emerged with the same general economic properties of such commodities. Therefore we may see an increase in their values as the Fed keeps pumping more money into the economy.
As of now in order to generate enough money per month to pay off rent in South Campus Commons, each apartment would need a Bitcoin rig capable of generating ~2200 TH/s (since you don’t pay for electricity). For the Varsity and View this might have to be higher considering the cost of electricity. This is definitely possible with new ASIC chips that are solely built for the purpose of running Bitcoin hashing algorithms. For other cryptocurrencies (Ethereum, Litecoin, Dogecoin), these rates may be different. But like any good portfolio manager, diversifying our investments will ensure we have a profitable outcome.
If enough students come together to construct a Bitcoin mining rig in their apartments we could essentially create a multi apartment clustered miner to be able to generate Bitcoin. On top of that, because campus server resources will be diminished due to online classes, we can in turn utilize that computing power to help mine such cryptocurrencies. As a result we won’t have to find people to sublet our apartments to and won’t have to worry about the financial undertakings associated with it.
TL;DR: Corona collectively fucked everyone in the ass and we should build a massive Bitcoin rig to pay off our rent.
submitted by terpetrator251 to UMD [link] [comments]

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

I'm trying to do the math on mining.

Given 100% of miners using the same miner, I tried to calculate the profitability of bitcoin mining. but the results seem off. I'm wondering where I went wrong.
"current terahashes (Th/s)" Mining Unit "mining non-current rate($/Th)" "mining non-current rate $/Th)" "Mining Efficiency (J/Th)" "Energy Requirments (J)" "Energy Requirements per Block (kWh) [0.000000277778 J/kWh]" "electric costs ($/kWh)" "current electrical cost to mine 1 block ($)"
8000000 Antminer T19; 84 Th/s; 37.5 J/Th; $1749; $20.82 $384,219.55 37.5 180000000000 50,000.04 0.0715 $3,575.00
current bitcoin reward current bitcoin price current block worth daily block rewards
6.25 9133 $57,081.25 $1,369,950.00
current profit ratio (%)
1596.48%

edit:

"current terahashes (Th/s)" Mining Unit "mining non-current rate($/Th)" "mining non-current rate $/Th)" "Mining Efficiency (J/Th)" "Energy Requirments (J)" "Energy Requirements per Block (kWh) [0.000000277778 J/kWh]" "electric costs ($/kWh)" "current electrical cost to mine 1 block ($)"
8000000 Antminer T19; 84 Th/s; 37.5 J/Th; $1749; $20.82 $5,859,348.20 37.5 2745000000000 762,500.61 0.0715 $54,518.79
current bitcoin reward current bitcoin price current block worth daily block rewards
6.25 9118 $56,987.50 $1,367,700.00
current profit ratio (%)
104.53%
submitted by qwer1234123412341234 to BitcoinBeginners [link] [comments]

ANTMINER S17+ 73 Th/s for sale $1500 USD

Newest range of BITCOIN an ALTCOIN miners. Refurbished miner lots at really affordable prices.
ANTMINER S19 PRO 110 Th/s $2500 USD (first batch)
ANTMINER S17+ 73 Th/s $1500 USD
and many other models with great price tags.
We are bringing cryptocurrency mining hardware at wholsale prices. Bitmain, MicroBT, Pandaminer, Canaan, Innosilicon & Ebang all the major mining brands available. Newest range of Bitcoin Asic miners, Altcoin integrated miners at incredible prices. Our warehouse has gone digital, limited stock so hurry up and grab this opportunity and place your orders before the stock goes out.
Secure Payment Modes complete with invoicing for taxation purposes (With Chargeback Purchase protection*):
1). Credit/Debit Cards (VISA, MASTERCARD)*
2). Cryptocurrency (Bitcoin, Ethereum, Monero and many more)
Now avail 10% discount on your total order by using promocode "firstdisc" while you checkout & get delivery of your merchandise in 7-10 business days or 25-30 business days if flat rate shipping option is selected.
Whatsapp Messenger 24/7: +17027571697
Live support
Email support
Order today at our Platform
submitted by sadpeperedditor to BitcoinMining [link] [comments]

An In-Depth Guide to: How do I Fix my Ledger Nano’s Stuck Ethereum Transaction?!?!?! (It’s Been Stuck for Weeks and NOTHING Traditional has Worked!!!!) As Well as: How Do I Choose My Nonce??? I’ve Tried MetaMask, MEW/MyEtherWallet, and Others, but Nothing is Working Correctly!!! I’m Dying by Stress!

So, if you were like me 1-2 months ago, you’ve probably already gone through 2,or 3, ...or 40 articles and guides that probably say something like:
“YeP, eVeRy EtHeReUm UsEr WiLl EvEnTuAlLy HaVe ThE LoW-gAs ExPeRiEnCe, YoU’rE nOt AlOnE! DoN’t FrEaK OuT tHoUgH; ThErE iS a WaY tO fIx It!”
Chances are, every time you read another useless article, you want to kill the nearest inanimate object, even though it was never alive in the first place. Nonetheless, you’re gonna kill it as much as it can be killed, holding nothing back; or, you’re just plotting to and slowly getting closer to executing the plan (and the object) every time you are insulted once again.
However, if you have the ability to download software (MyCryptoWallet) on a PC, it should be safe to relax now. I think you’ve finally found some good news, because I am 99.99...% sure this will work for the issue that so many people are having at this time, around the end of the month of May, year 2020.
More and more people are likely to be having this issue soon, since Ethereum's gas prices have been insanely high lately as well as having 300% price changes in a matter of minutes; Etherscan’s Gas tracker is nearly uselessly-inaccurate at this time. I've heard that there's a congestion attack; that was said a week ago, and it appears to be ongoing... (I can't think of any other suspect besides Justin Sun to blame it on... it must be incredibly expensive to overload the blockchain for this long... I may be wrong though...)
 
Let’s begin
For myself, I was trying to send an ERC20 token when this dreadful issue attacked. Specifically, the token was either BSOV or GRT; I sent them 1 after the other and the first succeeded, and the second one took over a week.
(They’re both great tokens in my opinion and deserve much more attention than they’ve been getting. BSOV is nearing its 1 year anniversary as I write this, and GRT is still in its 90 day community-development progress test, so of course I'm gonna take this opportunity to "shill" them; they are great tokens with great communities).
I was able to finally fix it, after a week of mental agony (also the txn finally processed 1-2 hours before I found the solution, robbing me of the gratitude of fixing it myself... (╯‵□′)╯︵┻━┻ ...but now I guess I can hopefully save some of you the headaches that I endured... ) I’m providing the ability to do the same, in a step by step guide.
Why did I go through all of this trouble? I'd fault the fact that I have ADHD and autism, which in my case can multiply each other’s intensity and cause me to “hyper-focus” on things, much much more than most with the same qualities, intentionally or not. Adderall is supposed to give me a bit of control over it, but except for in a very-generalized way, it’s still 90% up to chance and my default-capabilities to allow me control over my attention with self-willpower. But also Karma and Moons pls... ʘ‿ʘ
 
  1. In MyCrypto, (I'm using the Windows 10 app, version 1.7.10) you will open to a screen that says "How would you like to access your wallet?". Choose Ledger, of course. (Unless your here for some non-ledger issue? Idk why you would be but ok.)
  2. On the next screen (having your nano already plugged in, unlocked, and opened into the Ethereum app) click "Connect to Ledger Wallet"
  3. A screen overlay should appear, titled: "Select an Address". Here is where it may get confusing for some users. Refer to "AAA" below to know how to find your account. (Geez, sorry lol that was a huge amount of info for a reddit reply; I might've over-elaborated a little bit too much. but hey it's valuable information nonetheless!)
  4. After escaping the "AAA" section, you'll have accessed your account with MyCrypto. Awesome! To find your ERC20 tokens, (slight evil-laughter is heard from an unidentifiable origin somewhere in the back of your mind) go to "AAB".
  5. (You may have decided to find the token(s) on your own, rather than daring to submit to my help again; if so, you may pity those who chose the other path... ~~( ̄▽ ̄)~~) Now, once you've added your token, you should revert your attention to the account's transfer fill-out form!
  6. I'll combine the steps you probably understood on your own, already. Put in the address that your stuck transaction is still trying to send currency to. If an ERC20 token is involved, use the drop-down menu to change "ETH" to the token in trouble. Input your amount into the box labeled... wait for it... "Amount". Click on "+Advanced".
  7. Refer to Etherscan.com for the data you will need. Find the page for your "transaction(txn) hash/address" from the transaction history on the wallet/Ethereum-manager you used to send from. If that is unavailable, put your public address that your txn was sent from into the search tool and go to its info page; you should be able to find the pending txn there. Look to open the "more details" option to find the transaction's "Nonce" number.
  8. Put the nonce in the "Nonce" box on MyCrypto; you will contest the pending txn with a new txn that offers larger gas fees, by using the same nonce. If (but most likely "When") the new transaction is processed first, for being more miner-beneficial, the nonce will then be completed, and the old transaction will be dropped because it requests an invalid, now-outdated nonce. Your account will soon be usable!
  9. Go to the Gas Tracker, and it may or may not provide an informative reading. Choose whatever amount you think is best, but choose wisely; if you're too stingy it may get stuck again, and you'd need to pay another txn's gas to attempt another txn-fix.
  10. At the time I write this, I'd recommend 50-100 gwei; to repeat myself, gas requirements are insane right now. To be safe, make the gas limit a little higher than MCW's automatic calculation, you may need to undo the check-mark for "Automatically Calculate Gas Limit".
  11. Press "Send Transaction"!!!
  12. You will need to validate the action through your nano. It will have you validate three different things if you are moving an ERC20 Token. It's a good idea to verify accuracy, as always.
 
Well, I hope this worked for you! If not, you can let me know in a reply and I'll try to figure it out with you. I like making these in-depth educational posts, so if you appreciate it please let me know; I'll probably make more posts like this in the future!
( Surely this is at least far better than Ledger's "Support" article where they basically just tell you "Yeah, we haven't bothered to make a way to manually select nonces. I guess we might try to make that available for Bitcoin accounts at some point in the future; who knows? lol"... that's not infuriating at all, right?)
 
AAA:
Before I tell you how to find your address, I will first make it clear, within the italicized text, exactly which address you are looking for, if you are not already sure:
You may also skip the text written in italics if your issue does not include an ERC20 token, if you wish.
Ledger Live can confuse some users with its interface. On LL, to manage an ERC20 token, you first must go to your Ethereum account and add the token. When you then click on the added token under "Tokens" below the graph chart for your account's ETH amount over time, the screen will then open a new screen, that looks just the same, except focused on the specific ERC20 token. To confuse users further, there is then an option to "Star account", which then add the ETH icon with the ERC20 token's first letter or symbol overlapping, onto the easy access sidebar, as if it was another account of similar independency to the ETH account it was added to.
This improperly displays the two "accounts" relation to each other.
Your ERC20 holdings (at least for any and all ERC20 that I know of) are "held" in the exact-same address as the Ethereum address it was added to, which also "holds" any Ether you've added to it. You send both Ether (ETH) and any ERC20 Tokens to and from only Ethereum addresses of equivalent capabilities, in both qualities and quantities. In all basic terms and uses, they are the same.
So, to know what the problematic account's address is, find the address of the Ethereum account it was added to in Ledger Live.
Now, to find your address on MyCrypto, the most reliable way to find it, that I am aware of, is this:
Open Ledger Live. Go to the screen of your Ethereum address (again, this is the one that you added your ERC20 token, if applicable. If you're not dealing with an ERC20 token, you may ignore everything I've put in Italics). Click on "Edit account"; this is the icon next to the star that may look like a hex-wrench tool. On the new screen-overlay, you will see "> ADVANCED LOGS". Click on the ">" and it will point down while revealing a drop-down with some data that you may or may not recognize/understand. Likely to be found indented and in the middle-ish area, you will see this line, or something hopefully similar:
"freshAddressPath": "44'/60'/X'/0/0",
The "X" will probably be the only thing that changes, and the actual data will have a number in its place; it will not be a letter. Let's now put that line to use in MyCrypto:
Take the 44'/60'/X'/0/0 , and make sure you DO NOT copy the quotation marks, or that comma at the end either.
You can do this before or after copying and/or pasting, but drop the second "/0" at the end; it was not necessary in my case, I expect that you won't need it either, and will probably just make MyCrypto see it as an invalid input.
Okay, now go back to the "Select an Address" screen-overlay in MyCrypto.
Next to "Addresses", click on the box on the right, and you should be shown a list of options to select from in a drop-down menu.
Scroll all the way down, and you should find the "Custom" option at the very bottom. Select it.
A new box will appear; probably directly to the right of the now-shortened box that now displays the "Custom" option that you just selected. This box will offer an interface for typed input. ...yep... once again, believe it or not, you should click it.
Type " m/ ", no spaces before or after.
Type in or paste the data we retrieved from ledger live.
The box should now hold this:
m/44'/60'/X'/0
Again, X should be a number. In fact, that number is probably equal to the number of Ethereum (not including any ERC20 wannabe) accounts that you've made on Ledger Live before making the one we're working on right now! (1st Eth. Acc. would have: X = 0, 2nd: X = 1, 3rd: X = 2, ...)
Make sure you've included every apostrophe ( ' ), and solidus ( / ); there is NO APOSTROPHE for the "m" at the start and the "/0" at the end!
If you press the enter key or click on the check-mark to the right of where you typed, the appropriate addresses will be generated, and the address you created through Ledger Live should be the first one on the list!
Select your address and press "Unlock", and you are now accessing your account through the MyCrypto app's interface!
 
AAB:
In order to access your ERC20 token, you will need to add them first.
You may have to scroll down, but on the right-side of your unlocked account screen, you'll see a box with "Token Balances" as its header.
Click "Scan for tokens". This may take a short bit of time, and when it's done it may or may not display your ERC20 token. If it worked, you can head on back to the main part.
If you got the result I did, it won't display your token, or, if our result was exactly the same, it won't display any at all. However, you should now have the "Add Custom Token" option available, so see where that takes you.
You should discover four boxes, specified in order (Address/ Decimals / Token_Symbol / Balance). You may only need to fill in the "Address" box, but if you need to fill others, you'll find those with the token's address; here's 2 ways to find it, if you don't already know.
Method I:
Since you've probably already been managing your token with Ledger Live, you can go to the LL screen of your "account" for that token; Right next to the account's icon, and directly above the name, you'll see:
Contract: 0x??????...????????
Yes, go on; click it. You'll find the token's page on Etherscan; this was just a shortcut to the same place that both of the two previously referenced methods lead to. Skip to method... III?
Method II:
Go to Etherscan.com, or a similar Ethereum-blockchain-monitoring website, if you have a different preference. Search for the name of your token, and you should be able to see it as a search result. Activate your search manually of by selecting search option. Continue on with Method III.
Method III (Iⅈ what makes you think there was a third method? I said 2!):
At this point, you should find the "contract address" somewhere on the screen. This is the identity of the creature that breathes life into the token, allowing it to exist within the world of Ethereum. Steal it, and tell MyCrypto that you've left some of "your" tokens in the address of your ledger's Ethereum account. MyCrypto will trust and believe you without any concern or doubt, just by putting "your" contract address in the box for "Address"; it's almost too easy!
Well whaddya know, this one isn't actually too long! Don't tell anyone who may have taken a little longer whilst finding out how to do it themselves, though. There's value in trying to do something on your own, at least at first, so I'll let them think they made the right choice (¬‿¬). But take this star for humbling yourself enough to seek further help when you need it, since that is a very important life skill as well!
(o゜▽゜)o☆
Now, back to the useful stuff at the top...
 
EDIT: A comment below made me realize that this info should be added too. Here is my reply to the comment saying I could just use MetaMask. I said in the title that this guide is for questions where MEW and MetaMask aren’t working, but I guess it’s easy to miss. I used my u/caddark account to respond:
(Using this account because u/caddarkcrypto doesn’t meet the karma/age standards to comment; the post had to be manually approved.)
I guess I didn’t make it entirely clear; sorry:
The target audience for this guide is anyone with a stuck Ethereum transaction that was initiated through Ledger Live AND are experiencing the same difficulties I had encountered while trying to fix this issue for myself.
This wasn’t any regular stuck Ethereum transaction. Apparently before, there was an issue that made a Ledger Nano nearly impossible to connect to MetaMask (which is also Brave Browser’s integrated “crypto wallet” for the desktop version) and/or MEW (also perhaps any other browser wallets made for chrome and/or brave) that I heard was supposed to be fixed in a recent update. It might’ve been mostly patched, idk, but during my experience, (in which I was using the latest version of Ledger Live that is available right now,) that issue still remained.
The really weird part was that it successfully connected to the browser wallets again after I fixed the stuck transaction. At first I thought that somehow the txn was what was bugging the connection. However, later, during no txn issues, I was again unable to connect.
Seeing the same connection error again later, I opened up the MCW app I downloaded the day before, and was going to just use that. While in the process of operating MCW, I suddenly had another idea to try for the browser wallet so I went back to that just to quickly test it.
The browser wallet worked perfectly...
I don’t know how, but I think that somehow, something in MCW’s software, makes the browser wallets work. They don’t work for me without having MCW opened in the background first.
EDIT 2: Markdown decided to stop working after I did the first edit... I might fix it tomorrow... how did that happen though??? What did I do?
EDIT 3: nvm, I'm just fixing it now; I won't get much sleep tonight I guess.
submitted by CaddarkCrypto to CryptoCurrency [link] [comments]

What prevents state actors from proxying millions (USD) to mining pools to launch a 51% attack.

Update

u/cointastical made some awesome arguments about a POW fork being pre-baked and ready as a "break glass" emergency roll-out. This HAS been done before BTW. Another great idea about having a grass-roots campaign for everyone to use the invalidateblock command on their node to nullify the attack. Again done before, though on another coin.
Assuming that there exists some subset of miners that work completely to their own self interests and without any greater good or altruistic motives, how would you foresee the following dystopian fiction play out.
By rough estimates about 80% (proof tbd) of the bitcoin network mining exists in mining pools. These pools compete in a free market to entice independent miners to join their pool. The rates are paid in BTC per TH/s. The current price to "rent" the entire bitcoin networks pooled mining resources is about $9 to $10 million / day (proof). This is entirely within the budget of state actors, even the $3 billion to rent the bitcoin network for an entire year doesn't sound far fetched when considering government spending.
So if a state actor (government) were to partner with some established mining pool they could subsidize that pool to offer unrealistically high rates to entice more and more miners (in their self interest) to join their pool.
Once they reach majority (51%) they could exclude blocks from other small independent mining pools tilting the tables more in their favor. These early attacks would create long (25 block) reorgs (proof), but eventually, as they gained more market, they could make the attacks pretty quick. Each attack could exclude blocks from a 1% pool, 2% pool, and so-forth till they attack 1/3 (33%) of the miners at which point they control the whole network (proof tbd).
So assuming miners work in their own self interest, why wouldn't they join this obviously evil mining pool if that pool was offering 50% above market rate for their mining power compared to competitors?
submitted by brianddk to Bitcoin [link] [comments]

The discrepancy between BTC's hashrate and price are extremely suspicious

Assuming fairly efficient ASIC miners, which on average have an efficiency of ~34.5 J/TH:

c = Current hashrate = 88,200,000 TH/s
e = ASIC Efficiency (average) = 34.5 J/TH
a = Average electricity (including industrial and other expenses) = $0.12 USD/kWh
b = Current Block Reward = ₿6.25
m = Mining Fee Subsidies = ~₿ 9.5

∴ price = ~[((c * e)/6,000)(a)] / (b + m)
= ~$3864 to produce 1 Bitcoin

The actual market price is 138% above the cost of actually producing a Bitcoin.

Edit 1: I was an idiot, and forgot that the mining fees were what were collected daily (thanks to u/impleplum, so recalculating, it costs roughly ~$9016 to produce a Bitcoin, making the market value 2% above the cost of production, but Bitcoin Cash still costs $265 to produce, still making it 14% more expensive to mine Bitcoin Cash than the actual market value of it.
submitted by 1MightBeAPenguin to btc [link] [comments]

Mining bitcoin in college (free electricity!)

I am working with a friend to set up a bitcoin mining rig our university. I'm a business major, but my friend is in engineering and has unlimited free access to a 220v power supply. Would it be worth buying 100 AntMiner S9's on eBay and making our own rig?
The math breaks down as follows according to https://www.cryptocompare.com/mining/calculatobtc?HashingPower=1350&HashingUnit=TH%2Fs&PowerConsumption=137500&CostPerkWh=0&MiningPoolFee=1
1350 TH/s hashrate (with 100 S9s at 13.5 TH/s for each unit)
Electricity cost is zero.
Predicted payout is $3,390/month.
Am I missing something? It seems too good to be true, making 4k/month with only 10k up front.

EDIT: Assume the rig was well hidden and not discovered for a few years.
submitted by josiahkitching to Bitcoin [link] [comments]

Antminer S19 Pro 110 th/s $2300 ONLY limited units

Newest range of BITCOIN an ALTCOIN miners. Refurbished miner lots at really affordable prices.
ANTMINER S19 PRO 110 Th/s $2300 USD (first batch)
ANTMINER S17+ 73 Th/s $1500 USD
and many other models with great price tags.
We are bringing cryptocurrency mining hardware at wholsale prices. Bitmain, MicroBT, Pandaminer, Canaan, Innosilicon & Ebang all the major mining brands available. Newest range of Bitcoin Asic miners, Altcoin integrated miners at incredible prices. Our warehouse has gone digital, limited stock so hurry up and grab this opportunity and place your orders before the stock goes out.
Secure Payment Modes complete with invoicing for taxation purposes (With Chargeback Purchase protection*):
1). Credit/Debit Cards (VISA, MASTERCARD)*
2). Cryptocurrency (Bitcoin, Ethereum, Monero and many more)
Now avail 10% discount on your total order by using promocode "firstdisc" while you checkout & get delivery of your merchandise in 7-10 business days or 25-30 business days if flat rate shipping option is selected.
Whatsapp Messenger 24/7: +17027571697
Live support
Email support
Order today at our Platform
submitted by sadpeperedditor to crypto_mining [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

06-13 22:54 - 'Bitmain Antminer S19 (95 Th/s) Bitcoin Miner' (btcinshop.com) by /u/bestasics removed from /r/Bitcoin within 2-12min

Bitmain Antminer S19 (95 Th/s) Bitcoin Miner
Go1dfish undelete link
unreddit undelete link
Author: bestasics
submitted by removalbot to removalbot [link] [comments]

Why The Actual Cost Of Mining Bitcoin Can Leave It Vulnerable To A Deep Correction

In early 2020, researchers predicted the cost to mine Bitcoin will be at around $12,000 to $15,000 after the block reward halving in May. But, it is now much cheaper to mine BTC than the initial estimates. The low breakeven price to mine Bitcoin may leave it vulnerable to a correction.
Bitcoin has become more affordable to mine in recent weeks due to two main factors: difficulty adjustments and cheaper electricity in Sichuan, China due to the rainy season.
A low breakeven price of Bitcoin can raise the probability of a price pullback because miners have more incentive to sell BTC, which may increase selling pressure in the short-term.
On May 11, the third block reward halving in the history of Bitcoin occurred. A halving is activated every four years and it decreases the amount of BTC miners can generate by half.
A halving is necessary for Bitcoin because the dominant cryptocurrency has a fixed supply of 21 million BTC. As it reaches towards its maximum supply, the rate of producing BTC decreases to provide balance.
But, when a halving happens, miners experience a near-50% cut in their revenues overnight. As such, it typically leads over-leveraged miners to capitulate or stop operating due to high costs.
When fewer miners are mining BTC, the Bitcoin network automatically adjusts the difficulty to mine BTC.
Since Bitcoin miners use computing power to mine, big mining centers can usually mine more BTC after the difficulty adjusts.
The Bitcoin blockchain network saw two difficulty adjustments in the past three months, allowing major miners to see higher revenues in the short-term.
Here’s where the extra surplus of BTC becomes a problem.
According to several Chinese miners based in Sichuan, China, electricity in the region costs around $0.04 per kilowatt-hour.
Due to the rainy season and the abundance of hydropower plants in the area, mining industry executives state that large mining centers in China can often negotiate lower electricity prices.
With $0.04/kwh, miners based in China said that the breakeven cost to mine Bitcoin hovers in the $5,000 to $6,000 range.
Even individual miners running commercial mining equipment like the Antminer S9 is operating at a breakeven cost of $8,206.
“To be completely accurate: Given current difficulty, 0.04$/kWh and S9 running custom firmware bringing it down to 71W per TH efficiency. The cost to mine 1 BTC is 8206.64$. Meaning its still profitable,” one miner said.
Considering the cost to mine Bitcoin for both big mining centers and individual miners can range in between $5,000 and $8,500, miners have more incentive to sell to cover operational costs rather than to hold onto the BTC they mine.
According to data from ByteTree, Bitcoin miners did not sell much Bitcoin in the past week. Around 6,825 BTC were mined and 6,298 BTC were sold, leaving 527 BTC in net inventory.
In previous weeks, especially throughout March, on-chain data shows that miners sold more Bitcoin than their revenues.
Yet, the price of Bitcoin struggled to see a short-term rally despite the noticeable decline in selling pressure from miners since the start of June.
The relatively cheap cost to mine Bitcoin and the failure of BTC to break out of a multi-year resistance level at $10,500 with fewer sellers in the market raise the likelihood of another correction.
submitted by PresentType to bitcoinsimixerss [link] [comments]

Antminer T19 May Not Affect Bitcoin Hash Rate but Keeps Bitmain Ahead

The Antminer T19 by Bitmain may not have a big impact on the Bitcoin network, and it comes out amid the firm’s internal and post-halving uncertainty.
Earlier this week, Chinese mining-hardware juggernaut Bitmain unveiled its new product, an application-specific integrated circuit called Antminer T19. The Bitcoin (BTC) mining unit is the latest to join the new generation of ASICs — state-of-the-art devices designed to mitigate increased mining difficulty by maximizing the terahashes-per-second output.
The Antminer T19 announcement comes amid the post-halving uncertainty and follows the company’s recent problems with its S17 units. So, can this new machine help Bitmain to reinforce its somewhat hobbled position in the mining sector?
T19: The cheaper S19
According to the official announcement, the Antminer T19 features a mining speed of 84 TH/s and a power efficiency of 37.5 joules per TH. The chips used in the new device are the same as those equipped in the Antminer S19 and S19 Pro, though it uses the new APW12 version of the power supply system that allows the device to start up faster.
Bitmain usually markets its Antminer T devices as the most cost-effective ones, while the S-series models are presented as the top of the line in terms of productivity for their respective generation, Johnson Xu — the head of research and analytics at Tokensight — explained to Cointelegraph. According to data from F2Pool, one of the largest Bitcoin mining pools, Antminer T19s can generate $3.97 of profit each day, while Antminer S19s and Antminer S19 Pros can earn $4.86 and $6.24, respectively, based on an average electricity cost of $0.05 per kilowatt-hour.
Antminer T19s, which consume 3,150 watts, are being sold for $1,749 per unit. Antminer S19 machines, on the other hand, cost $1,785 and consume 3,250 watts. Antminer S19 Pro devices, the most efficient of three, are considerably more expensive and go for $2,407. The reason Bitmain is producing another model for the 19 series is due to what is known as "binning" chips, Marc Fresa — the founder of mining firmware company Asic.to — explained to Cointelegraph:
“When chips are designed they are meant to achieve specific performance levels. Chips that fail to hit their target numbers, such as not achieving the power standards or their thermal output, are often ‘Binned.’ Instead of throwing these chips in the garbage bin, these chips are resold into another unit with a lower performance level. In the case of Bitmain S19 chips that don’t make the cutoff are then sold in the T19 for cheaper since they do not perform as well as the counterpart.” The rollout of a new model “has nothing to do with the fact that machines are not selling well,” Fresa went on to argue, citing the post-halving uncertainty: “The biggest reason machines probably are not selling as well as manufacturers would like is because we are on a bit of a tipping point; The halving just happened, the price can go anyway and the difficulty is continuing to drop.” Product diversification is a common strategy for mining hardware producers, given that customers tend to aim for different specifications, Kristy-Leigh Minehan, a consultant and the former chief technology officer of Genesis Mining, told Cointelegraph:
“ASICs don’t really allow for one model as consumers expect a certain performance level from a machine, and unfortunately silicon is not a perfect process — many times you’ll get a batch that performs better or worse than projected due to the nature of the materials. Thus, you end up with 5–10 different model numbers.” It is not yet clear how efficient the 19-series devices are because they have not shipped at scale, as Leo Zhang, the founder of Anicca Research, summed up in a conversation with Cointelegraph. The first batch of S19 units reportedly shipped out around May 12, while the T19 shipments will start between June 21 and June 30. It is also worth noting that, at this time, Bitmain only sells up to two T19 miners per user “to prevent hoarding.”
Hardware problems and competitors
The latest generation of Bitmain ASICs follows the release of the S17 units, which have received mostly mixed-to-negative reviews in the community. In early May, Arseniy Grusha, the co-founder of crypto consulting and mining firm Wattum, created a Telegram group for consumers unsatisfied with the S17 units they purchased from Bitmain. As Grusha explained to Cointelegraph at the time, out of the 420 Antminer S17+ devices his company bought, roughly 30%, or around 130 machines, turned out to be bad units.
Similarly, Samson Mow, the chief strategy officer of blockchain infrastructure firm Blockstream, tweeted earlier in April that Bitmain customers have a 20%–30% failure rate with Antminer S17 and T17 units. “The Antminer 17 series is generally considered not great,” added Zhang. He additionally noted that Chinese hardware company and competitor Micro BT has been stepping on Bitmain’s toes lately with the release of its highly productive M30 series, which prompted Bitmain to step up its efforts:
“Whatsminer gained significant market share in the past two years. According to their COO, in 2019 MicroBT sold ~35% of the network hashrate. Needless to say Bitmain is under a lot of pressure both from competitors and internal politics. They have been working on the 19 series for a while. The specs and price look very attractive.” Minehan confirmed that MicroBT has been gaining traction on the market, but refrained from saying that Bitmain is losing market share as a result: “I think MicroBT is offering option and bringing in new participants, and giving farms a choice. Most farms will have both Bitmain and MicroBT side by side, rather than exclusively host one manufacturer.”
“I would say that MicroBT has taken up the existing market share that Canaan has left,” she added, referring to another China-based mining player that recently reported a net loss of $5.6 million in the first quarter of 2020 and cut the price of its mining hardware by up to 50%.
Indeed, some large-scale operations seem to be diversifying their equipment with MicroBT units. Earlier this week, United States mining firm Marathon Patent Group announced that it had installed 700 Whatsminer M30S+ ASICs produced by MicroBT. However, it is also reportedly waiting for a delivery of 1,160 Antminer S19 Pro units produced by Bitmain, meaning that it also remains loyal to the current market leader.
Will the hash rate be affected?
Bitcoin’s hash rate plummeted 30% soon after the halving occurred as much of the older generation equipment became unprofitable due to the increased mining difficulty. That spurred miners to reshuffle, upgrading their current rigs and selling older machines to places where electricity is cheaper — meaning that some of them had to temporarily unplug.
The situation has stabilized since, with the hash rate fluctuating around 100 TH/s for the past few days. Some experts attribute that to the start of the wet season in Sichuan, a southwest Chinese province where miners take advantage of low hydroelectricity prices between May and October.
The arrival of the new generation of ASICs is expected to drive the hash rate even higher, at least once upgraded units become widely available. So, will the newly revealed T19 model make any impact on the state of the network?
Experts agree that it won’t affect the hash rate to a major degree, as it’s a lower output model compared with the S19 series and MicroBT’s M30 series. Minehan said she doesn’t expect the T19 model “to have a huge impact that’s an immediate cause of concern,” as “most likely this is a run of <3500 units of a particular bin quality.” Similarly, Mark D’Aria, the CEO of crypto consulting firm Bitpro, told Cointelegraph:
“There isn’t a strong reason to expect the new model to significantly affect the hashrate. It might be a slightly more compelling option to a miner with extraordinarily inexpensive electricity, but otherwise they likely would have just purchased an S19 instead.” Bitmain continues to hold leadership despite internal struggle
At the end of the day, manufacturers are always in an arms race, and mining machines are simply commodity products, Zhang argued in a conversation with Cointelegraph:
“Besides price, performance, and failure rate, there are not many factors that can help a manufacturer differentiate from the others. The relentless competition led to where we are today.” According to Zhang, as the iteration rate naturally slows down in the future, there will be more facilities using “creative thermal design such as immersion cooling,” hoping to maximize the mining efficiency beyond just using most powerful machines.
As for now, Bitmain remains the leader of the mining race, despite having to deal with the largely defunct 17 series and an intensifying power struggle between its two co-founders, Jihan Wu and Micree Zhan, which recently resulted in reports of a street brawl.
“Due to its recent internal issues, Bitmain is facing challenges to keep its strong position in the future thus they started to look at other things to expand its industry influences,” Xu told Cointelegraph. He added that Bitmain “will still dominate the industry position in the near future due to its network effect,” although its current problems might allow competitors such as MicroBT to catch up.
Earlier this week, the power struggle inside Bitmain intensified even further as Micree Zhan, an ousted executive of the mining titan, reportedly led a group of private guards to overtake the company’s office in Beijing.
Meanwhile, Bitmain continues to expand its operations. Last week, the mining company revealed it was extending its “Ant Training Academy” certification program to North America, with the first courses set to launch in the fall. As such, Bitmain seems to be doubling down on the U.S.-based mining sector, which has been growing recently. The Beijing-based company already operates what it classifies as “the world’s largest” mining facility in Rockdale, Texas, which has a planned capacity of 50 megawatts that can later be expanded to 300 megawatts.
submitted by melissaBrian0 to Bitcoin [link] [comments]

Actual cost of a 51% attach, $10.2 million

So I was discussing this last week and honestly it all felt too simple, so I'm trying to get some stronger counterpoints to this argument. Goes something like this.
You have some pool miner that wants to do a 51% attack. Lets assume the attack has three phases, the first phase is to try to accumulate 51% of the hashing power, next is the accumulation of more hashing power by ejecting other pools from through reorg. Finally when they aquired enough mining power they could blacklist exchange hotwallets or all manner of nefariousness. Lets further assume that everyone will act purely in their own self interest. For simplicity lets call the attacker "Spectre Pool".

Accumulation Phase

Assuming Spectre Pool can hit something like 41% of the hashing power, the first goal is to accumulate more resources to hit 51%. Since pool mining is a commodity market, all Spectre has to do in this imaginary world is offer more than the market rate. Since they are already at 41% hashrate, they need to entice another 10% of the market to come to their pool. The obvious way to do this would be to offer a "new customer bonus" or something like that. Some promotion where they pay 1% above market price for the hashing power of pool members. So, given a network hashrate of 116.73 EH and a market rate of 0.101 USD/TH per day, the cost they would have to bear to offer a 1% promotion to entice 10% of the network would be:
116.73_EH / 0.101_USD/TH * 10% * 1% = 1,155,742 USD per day for each 1% "bonus"
So, assuming they were willing to spend that much on "marketing", and that all miners worked in their own self interest, eventually they could lure enough miners over to achive 51%. Once they hit this threshold they could scale back on the "marketing" and thus reduce their daily burn.

Acceleration phase

Once at 51%, the next attack of Spectre will be to put their smallest competitor out of buisness. Lets call that the "Bond Pool", and pretend that Bond has 1.5% of the network hashing power. To put Bond out of buisness, with 51%, Spectere will need to reorg whenever Bond wins a block. By reorging to a chain without Bond, this will put Spectre one block behind and they will need to catch up. Once the reorg begins, Spectre will need to produce the longest chain on its own while starting one block behind. So we need to determine how long (statisticly) it will take Specter to produce n+1 blocks and compare that to how long (statisticly) it will take Bond to win one block.
Although this can be hammered out in an iterive calculation, a better approach will be an algebraic solution. Lets walk through the equations:
You can put the following into a GeoGebra CAS calculator to substitute and simplify the equations
solve(n*m = s*(n+1), n) M = 1/2-d S = 1/2+d m = t/M s = t/S solve(n*m = s*(n+1), d) n = s/(m-s) b = m*M/p solve(b = s*(n+1),p)
This will produce the following equations for the values we are interested in.
m(t,d): t/(1/2-d) # from `m` define s(t,d): t/(1/2-d) # from `s` define n(s,m): s/(m-s) # from `n` solve d(n): 1/(4*n+2) # from `d` solve p(d): 2*d # from `p` solve b(t,p): t/p # from `b` define
Plugging the equations into excel produces the following (assuming t=10)
n d p m s b
25 0.98% 1.96% 20.40 19.62 510
20 1.22% 2.44% 20.50 19.52 410
15 1.61% 3.23% 20.67 19.38 310
10 2.38% 4.76% 21 19.09 210
5 4.55% 9.09% 22 18.33 110
4 5.56% 11.11% 22.50 18 90
3 7.14% 14.29% 23.33 17.50 70
2 10% 20% 25 16.67 50
1 16.67% 33.33% 30 15 30
So once d=0.98%, Specture will have 50.98% of the hashing power, allowing him to eject 1.96% of all blocks mined at will. Of course this is all statistical, so Spectre will want some margin for randomness. So it would make sense to attach 1.5% of the blocks when Spectre reaches 51%
So once Spectre reaches 51% he has enough hashing power to prevent any of Bonds blocks (1.5%) from being included. Spectre can win a reorg (statistically) every 8.5 hrs and Bond can only produce a block (statisticly) every 11.1 hours. So once this attack starts, Spectre simply flashes his promotion to lure the miners in the Bond pool (who are receiving no reward) over to the Spectre pool. If he only gets one third of them, then he can increase his influence to 52%
Doing the same math again, with 52% Spectre can ice out any pool who has up to 4% of the hashing. Then running the promotion, Spectre will try to get 40% of the "homeless miners". Now Spectre's power grows to 55% giving him the power to ice out 10% of his competitors. This can cascade on and on until Spectre is the only public pool left.
Now, at 51% the attack and reorgs take many hours, but as more and more pools get targeted, more and more miners will jump ship and end up at Spectre so long as they can hold the promotion. Bond's only choice would be to either close up, or leverage everything and mine at a loss for weeks hoping that Spectre eventually drops below the threshold for his attack.
Of course Spectre has even more tremendous expenses. To offer the 1% promo to 10% of the network would cost Spectre $1.16 million / day, or 3.52 million per month for each percent of miners it lures over. So going from 41% to 61% would cost Spectre $70.3 million / month, but at that point he can attack 20% of the network giving him a reach of about 80% which is pretty much the entire pooled mining capacity today. Seems like $70 million is a small price to pay to buy the entire bitcoin network.
Other expenses Spectre would accrue would be related to the attacks and reorgs. The early attacks will take hours and throughout Spectre needs to continue payouts to the pool even though he is generating no BTC durring the attack. So long as his chain is orphaned, his blocks have no value. Only after the attack and reorg when his chain becomes longest will he be able to claim the block reward for all the blocks he minded. This (in my opinion) will the the hardest challenge. The first attack and 25 block reorg will require Spectre to put his entire 51% hashing power on an orphaned chain for 8 hours requireing $208.6 million in payouts. Once he wins the attack and the chain reorgs he can cover his expeses with the block reward, but borrowing $208 million for 8 hours is still a very difficult thing to pull off. The interest alone on the attack is over $40,000 (20% interest compounded continually). Below is a table of the calculations
Specte Bond Promo Cost Hrs Blks Levrg / Block Reorg Leverage Rate Int Cost
51.00% 1.50% $1,155,743 8.497 25 $8,025,990 $208,675,743 20% $40,485
51.50% 2.50% $1,232,745 5.825 17 $8,025,990 $144,467,822 20% $19,215
52.50% 4.50% $1,336,143 3.492 10 $8,025,990 $88,285,891 20% $7,039
54.50% 7.50% $1,562,998 2.141 6 $8,025,990 $56,181,931 20% $2,746
58.50% 14.50% $2,023,385 1.140 3 $8,025,990 $32,103,960 20% $835
66.70% 33.30% $2,970,442 0.500 1 $8,025,990 $16,051,980 20% $183
Of course, once Spectre gets 2/3 of the hashing power he controls the entire chain since he can include or exclude any block he wants. So this "Total Self Interest" simulation of a 6 day attack puts Spectre's expenses at $10.3 million in promotions and $71,000 in interest, or about $10.4 million total.
1 - All "hashes" are hashes per second
2 - TH = 1012 or 10004 hashes per second
3 - EH = 1018 or 10006 hashes per second
4 - Assume a market rate of 0.101 USD / TH / day
5 - Assume an average daily network hashrate of 116.73 EH
submitted by brianddk to brianddk [link] [comments]

Test post

TH = 1012 = 10004 hashes_per_second EH = 1018 = 10006 hashes_per_second
21.113
0.101 daily USD per TH/s
116.73 EH/s
So I was discussing this last week and honestly it all felt too simple, so I'm trying to get some stronger counterpoints to this argument. Goes something like this.
You have some pool miner that wants to do a 51% attack. Lets assume the attack has three phases, the first phase is to try to accumulate 51% of the hashing power, next is the accumulation of more hashing power by ejecting other pools from through reorg. Finally when they aquired enough mining power they could blacklist exchange hotwallets or all manner of nefariousness. Lets further assume that everyone will act purely in their own self interest. For simplicity lets call the attacker "Spectre Pool".

Accumulation Phase

Assuming Spectre Pool can hit something like 41% of the hashing power, the first goal is to accumulate more resources to hit 51%. Since pool mining is a commodity market, all Spectre has to do in this imaginary world is offer more than the market rate. Since they are already at 41% hashrate, they need to entice another 10% of the market to come to their pool. The obvious way to do this would be to offer a "new customer bonus" or something like that. Some promotion where they pay 1% above market price for the hashing power of pool members. So, given a network hashrate of 116.73 EH and a market rate of 0.101 USD/TH per day, the cost they would have to bear to offer a 1% promotion to entice 10% of the network would be:
116.73_EH / 0.101_USD/TH * 10% * 1% = 1,155,742 USD per day for each 1% "bonus"
So, assuming they were willing to spend that much on "marketing", and that all miners worked in their own self interest, eventually they could lure enough miners over to achive 51%. Once they hit this threahold they could scale back on the "marketing" and thus reduce their daily burn.

Acceleration phase

Once at 51%, the next attack of Spectre will be to put their smallest competitor out of buisness. Lets call that the "Bond Pool", and pretend that Bond has 1.5% of the network hashing power. To put Bond out of buisness, with 51%, Spectere will need to reorg whenever Bond wins a block. By reorging to a chain without Bond, this will put Spectre one block behind and they will need to catch up. Once the reorg begins, Spectre will need to produce the longest chain on its own while starting one block behind. So we need to determine how long (statisticly) it will take Specter to produce an n+1 blocks and compare that to how long (statisticly) with take Bond to produce another block.
Although this can be hammered out iterive calculations, a better approach will be an algebraic solution. Lets walk through the equations:
You can put the following into a GeoGebra CAS calculator to substitute and simplify the equations
solve(n*m = s*(n+1), n) M = 1/2-d S = 1/2+d m = t/M s = t/S solve(n*m = s*(n+1), d) n = s/(m-s) b = m*M/p solve(b = s*(n+1),p)
This will produce the following equations for the values we are interested in.
m(t,d): t*(1/2-d) # from `m` define s(t,d): t*(1/2-d) # from `s` define n(s,m): s/(m-s) # from `n` solve d(n): 1/(4*n+2) # from `d` solve p(d): 2*d # from `p` solve b(t,p): t/p # from `b` define
Here's a table
n d p m s b
25 0.98% 1.96% 20.40 19.62 510
20 1.22% 2.44% 20.50 19.52 410
15 1.61% 3.23% 20.67 19.38 310
10 2.38% 4.76% 21 19.09 210
5 4.55% 9.09% 22 18.33 110
4 5.56% 11.11% 22.50 18 90
3 7.14% 14.29% 23.33 17.50 70
2 10% 20% 25 16.67 50
1 16.67% 33.33% 30 15 30
solve(nm = s(n+1), d) n = s/(m-s) b = m*M/p
``` Tb = The avg time between blocks won by Bond durring the reorg Ts = The avg time for Spectre to produce a block durring the reorg Tm = The avg time for the main chain to produce a block durring the reorg n = The number of blocks Specter will need to reorg
Tb = 10_min / 49% / 3% = 10.89 Hrs Ts = 10_min / 51% = 19.61 Min Tm = 10_min / 49% = 20.41 Min
Solve for the amount of blocks Specter can reorg Tmn > Ts(n+1) Tnn > Tsn + Ts n > Ts/(Tn - Ts) n > 24.5
Therefore: Spectre can produce 26 blocks faster than the main chain can produce 25. Specter has to win the reorg before Bond produces another block
Assert: Ts * (n+1) < Tb 19.61_min * 26 < 10.89_hrs 8.50_hrs < 10.89_hrs ```
So once Spectre reaches 51% he has enough hashing power to prevent any of Bonds blocks from being included. Spectre can win a reorg (statistically) every 8.5 hrs and Bond can only produce a block (statisticly) every 10.89 hours. So once this attack starts, Spectre simply flashes his promotion to lure the miners in the Bond pool (who are receiving no reward) over to the Spectre pool. If he only gets one third of them, then he can increase his influence to 52%
Doing the same math again, with 52% Spectre can ice out any pool who has up to 7% of the hashing. Then running the promotion, Spectre will try to get 40% of the "homeless miners". Now Spectre's power grows to 55% giving him the power to ice out 16% of his competitors. This can cascade on and on until Spectre is the only public pool left.
1 - All "hashes" are hashes per second 2 - TH = 1012 or 10004 hashes per second 3 - EH = 1018 or 10006 hashes per second 4 - Assume a market rate of 0.101 USD / TH / day 5 - Assume an average daily network hashrate of 116.73 EH
``` solve(nm = s(n+1), n) M = 1/2-d S = 1/2+d m = t/M s = t/S solve(nm = s(n+1), d) n = s/(m-s) b = mM/p solve(b = s(n+1),p)
m(t,d): t(1/2-d) # from m define s(t,d): t(1/2-d) # from s define n(s,m): s/(m-s) # from n solve d(n): 1/(4n+2) # from d solve p(d): 2d # from p solve b(t,p): t/p # from b define ```
submitted by brianddk to brianddk [link] [comments]

New Free Bitcoin Mining Sites 2020  0.008 BTC Earn Without Investment  Clowerty New Cloud Mining Bitcoin miner system 2020 Real Working atNWs5LYN0M Bitcoin Faucet: Extrabtc - 4 satoshis every 0 minutes (Faucetpay) Free Bitcoin Miner Website 2020  Mine 1 BTC Daily NEW FREE BITCOIN CLOUD MINING 2020  FREE BITCOIN MINER  FREE BTC GENERATOR

Bitcoin's design makes it easy and efficient for the spender to specify how much fee to pay, whereas it would be harder and less efficient for the recipient to specify the fee, so by custom the spender is almost always solely responsible for paying all necessary Bitcoin transaction fees. When a miner creates a block proposal, the miner is Calculate Bitcoin (BTC) mining profitability in realtime based on hashrate, power consumption and electricity cost. BTC exchange rates, mining pools. $9,909.80 $65.61 $310.45 $77.73 $6.62 $74.97 $47.96 Follow @WhatToMine dark mode MicroBT M40 – MicroBT Whatsminer M40 High Hashrate. High Efficiency. Our most popular miner is now even better. MicroBT M40 is mining SHA-256 algorithm with a powerful hashrate of 410 Th/s at only a power consumption of 2570W.. It is built with the most advanced 10th Generation ASIC Bitcoin Miner technology and 7NM chip to achieve high efficiency, using high quality fans for the extra heat Live income estimation updated every minute. Description. Model Antminer T17 (40Th) from Bitmain mining SHA-256 algorithm with a maximum hashrate of 40Th/s for a power consumption of 2200W. The R4’s efficiency of 0.098 J/GHs is tied with the S9 as the most efficient Bitcoin miner on the market. Here is a direct quote from Bitmain’s website: Bitmain’s BM1387 chip is built using TSMC’s 16nm FinFET technology and, delivering a record-breaking 0.098 J/GHs, is the world’s most efficient bitcoin mining chip in the consumer market.

[index] [29285] [10878] [16658] [22590] [21249] [498] [5225] [12468] [9259] [25125]

New Free Bitcoin Mining Sites 2020 0.008 BTC Earn Without Investment Clowerty New Cloud Mining

Best BTC Miners in 2020: Bitcoin Miner Machine The State of Bitcoin Mining Best Bitcoin Miners CGMiner EasyMiner MultiMiner BFGMiner NiceHash GUI Miner DiabloMiner Miners for PC Mobile Miners for ... Bit-Flow-New Free Bitcoin Cloud Mining Site 2020-Signup Bonus Level 1-Daily Earn 0.01BTC - Duration: 4:05. Crypto Mining 108 views. New Bitcoin has been a subject of scrutiny amid concerns that it can be used for illegal activities. In October 2013 the US FBI shut down the Silk Road online black market and seized 144,000 bitcoins ... BTC GENERATOR FREE. BITCOIN MINER 2020 100%. LEGIT BITCOIN MONEY GENERATOR. Go Site Btc Generator: https://bit.ly/2CQQXyk Go Site Btc Generator: https://bit.ly/2CQQXyk Crypto BTC generator. Free ... This bitcoin miner tool works now in April 2020, I've been using it or a couple of weeks now and made a huge difference in my life! bitcoin block pro online works on an android device or iso ...

Flag Counter