Transaction - Bitcoin.com Wiki

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

Polkadot Launch AMA Recap

Polkadot Launch AMA Recap

The Polkadot Telegram AMA below took place on June 10, 2020

https://preview.redd.it/4ti681okap951.png?width=4920&format=png&auto=webp&s=e21f6a9a276d35bb9cdec59f46744f23c37966ef
AMA featured:
Dieter Fishbein, Ecosystem Development Lead, Web3 Foundation
Logan Saether, Technical Education, Web3 Foundation
Will Pankiewicz, Master of Validators, Parity Technologies
Moderated by Dan Reecer, Community and Growth, Polkadot & Kusama at Web3 Foundation

Transcription compiled by Theresa Boettger, Polkadot Ambassador:

Dieter Fishbein, Ecosystem Development Lead, Web3 Foundation

Dan: Hey everyone, thanks for joining us for the Polkadot Launch AMA. We have Dieter Fishbein (Head of Ecosystem Development, our business development team), Logan Saether (Technical Education), and Will Pankiewicz (Master of Validators) joining us today.
We had some great questions submitted in advance, and we’ll start by answering those and learning a bit about each of our guests. After we go through the pre-submitted questions, then we’ll open up the chat to live Q&A and the hosts will answer as many questions as they can.
We’ll start off with Dieter and ask him a set of some business-related questions.

Dieter could you introduce yourself, your background, and your role within the Polkadot ecosystem?

Dieter: I got my start in the space as a cryptography researcher at the University of Waterloo. This is where I first learned about Bitcoin and started following the space. I spent the next four years or so on the investment team for a large asset manager where I primarily focused on emerging markets. In 2017 I decided to take the plunge and join the space full-time. I worked at a small blockchain-focused VC fund and then joined the Polkadot team just over a year ago. My role at Polkadot is mainly focused on ensuring there is a vibrant community of projects building on our technology.

Q: Adoption of Polkadot of the important factors that all projects need to focus on to become more attractive to the industry. So, what is Polkadot's plan to gain more Adoption? [sic]

A (Dieter): Polkadot is fundamentally a developer-focused product so much of our adoption strategy is focused around making Polkadot an attractive product for developers. This has many elements. Right now the path for most developers to build on Polkadot is by creating a blockchain using the Substrate framework which they will later connect to Polkadot when parachains are enabled. This means that much of our adoption strategy comes down to making Substrate an attractive tool and framework. However, it’s not just enough to make building on Substrate attractive, we must also provide an incentive to these developers to actually connect their Substrate-based chain to Polkadot. Part of this incentive is the security that the Polkadot relay chain provides but another key incentive is becoming interoperable with a rich ecosystem of other projects that connect to Polkadot. This means that a key part of our adoption strategy is outreach focused. We go out there and try to convince the best projects in the space that building on our technology will provide them with significant value-add. This is not a purely technical argument. We provide significant support to projects building in our ecosystem through grants, technical support, incubatoaccelerator programs and other structured support programs such as the Substrate Builders Program (https://www.substrate.io/builders-program). I do think we really stand out in the significant, continued support that we provide to builders in our ecosystem. You can also take a look at the over 100 Grants that we’ve given from the Web3 Foundation: https://medium.com/web3foundation/web3-foundation-grants-program-reaches-100-projects-milestone-8fd2a775fd6b

Q: On moving forward through your roadmap, what are your most important next priorities? Does the Polkadot team have enough fundamentals (Funds, Community, etc.) to achieve those milestones?

A (Dieter): I would say the top priority by far is to ensure a smooth roll-out of key Polkadot features such as parachains, XCMP and other key parts of the protocol. Our recent Proof of Authority network launch was only just the beginning, it’s crucial that we carefully and successfully deploy features that allow builders to build meaningful technology. Second to that, we want to promote adoption by making more teams aware of Polkadot and how they can leverage it to build their product. Part of this comes down to the outreach that I discussed before but a major part of it is much more community-driven and many members of the team focus on this.
We are also blessed to have an awesome community to make this process easier 🙂

Q: Where can a list of Polkadot's application-specific chains can be found?

A (Dieter): The best list right now is http://www.polkaproject.com/. This is a community-led effort and the team behind it has done a terrific job. We’re also working on providing our own resource for this and we’ll share that with the community when it’s ready.

Q: Could you explain the differences and similarities between Kusama and Polkadot?

A (Dieter): Kusama is fundamentally a less robust, faster-moving version of Polkadot with less economic backing by validators. It is less robust since we will be deploying new technology to Kusama before Polkadot so it may break more frequently. It has less economic backing than Polkadot, so a network takeover is easier on Kusama than on Polkadot, lending itself more to use cases without the need for bank-like security.
In exchange for lower security and robustness, we expect the cost of a parachain lease to be lower on Kusama than Polkadot. Polkadot will always be 100% focused on security and robustness and I expect that applications that deal with high-value transactions such as those in the DeFi space will always want a Polkadot deployment, I think there will be a market for applications that are willing to trade cheap, high throughput for lower security and robustness such as those in the gaming, content distribution or social networking sectors. Check out - https://polkadot.network/kusama-polkadot-comparing-the-cousins/ for more detailed info!

Q: and for what reasons would a developer choose one over the other?

A (Dieter): Firstly, I see some earlier stage teams who are still iterating on their technology choosing to deploy to Kusama exclusively because of its lower-stakes, faster moving environment where it will be easier for them to iterate on their technology and build their user base. These will likely encompass the above sectors I identified earlier. To these teams, Polkadot becomes an eventual upgrade path for them if, and when, they are able to perfect their product, build a larger community of users and start to need the increased stability and security that Polkadot will provide.
Secondly, I suspect many teams who have their main deployment on Polkadot will also have an additional deployment on Kusama to allow them to test new features, either their tech or changes to the network, before these are deployed to Polkadot mainnet.

Logan Saether, Technical Education, Web3 Foundation

Q: Sweet, let's move over to Logan. Logan - could you introduce yourself, your background, and your role within the Polkadot ecosystem?

A (Logan): My initial involvement in the industry was as a smart contract engineer. During this time I worked on a few projects, including a reboot of the Ethereum Alarm Clock project originally by Piper Merriam. However, I had some frustrations at the time with the limitations of the EVM environment and began to look at other tools which could help me build the projects that I envisioned. This led to me looking at Substrate and completing a bounty for Web3 Foundation, after which I applied and joined the Technical Education team. My responsibilities at the Technical Education team include maintaining the Polkadot Wiki as a source of truth on the Polkadot ecosystem, creating example applications, writing technical documentation, giving talks and workshops, as well as helping initiatives such as the Thousand Validator Programme.

Q: The first technical question submitted for you was: "When will an official Polkadot mobile wallet appear?"

A (Logan): There is already an “official” wallet from Parity Technologies called the Parity Signer. Parity Signer allows you to keep your private keys on an air-gapped mobile device and to interactively sign messages using web interfaces such as Polkadot JS Apps. If you’re looking for something that is more of an interface to the blockchain as well as a wallet, you might be interested in PolkaWallet which is a community team that is building a full mobile interface for Polkadot.
For more information on Parity Signer check out the website: https://www.parity.io/signe

Q: Great thanks...our next question is: If someone already developed an application to run on Ethereum, but wants the interoperability that Polkadot will offer, are there any advantages to rebuilding with Substrate to run as a parachain on the Polkadot network instead of just keeping it on Ethereum and using the Ethereum bridge for use with Polkadot?

A (Logan): Yes, the advantage you would get from building on Substrate is more control over how your application will interact with the greater Polkadot ecosystem, as well as a larger design canvas for future iterations of your application.
Using an Ethereum bridge will probably have more cross chain latency than using a Polkadot parachain directly. The reason for this is due to the nature of Ethereum’s separate consensus protocol from Polkadot. For parachains, messages can be sent to be included in the next block with guarantees that they will be delivered. On bridged chains, your application will need to go through more routes in order to execute on the desired destination. It must first route from your application on Ethereum to the Ethereum bridge parachain, and afterward dispatch the XCMP message from the Polkadot side of the parachain. In other words, an application on Ethereum would first need to cross the bridge then send a message, while an application as a parachain would only need to send the message without needing to route across an external bridge.

Q: DOT transfers won't go live until Web3 removes the Sudo module and token holders approve the proposal to unlock them. But when will staking rewards start to be distributed? Will it have to after token transfers unlock? Or will accounts be able to accumulate rewards (still locked) once the network transitions to NPoS?

A (Logan): Staking rewards will be distributed starting with the transition to NPoS. Transfers will still be locked during the beginning of this phase, but reward payments are technically different from the normal transfer mechanism. You can read more about the launch process and steps at http://polkadot.network/launch-roadmap

Q: Next question is: I'm interested in how Cumulus/parachain development is going. ETA for when we will see the first parachain registered working on Kusama or some other public testnet like Westend maybe?

A (Logan): Parachains and Cumulus is a current high priority development objective of the Parity team. There have already been PoC parachains running with Cumulus on local testnets for months. The current work now is making the availability and validity subprotocols production ready in the Polkadot client. The best way to stay up to date would be to follow the project boards on GitHub that have delineated all of the tasks that should be done. Ideally, we can start seeing parachains on Westend soon with the first real parachains being deployed on Kusama thereafter.
The projects board can be viewed here: https://github.com/paritytech/polkadot/projects
Dan: Also...check out Basti's tweet from yesterday on the Cumulus topic: https://twitter.com/bkchstatus/1270479898696695808?s=20

Q: In what ways does Polkadot support smart contracts?

A (Logan): The philosophy behind the Polkadot Relay Chain is to be as minimal as possible, but allow arbitrary logic at the edges in the parachains. For this reason, Polkadot does not support smart contracts natively on the Relay Chain. However, it will support smart contracts on parachains. There are already a couple major initiatives out there. One initiative is to allow EVM contracts to be deployed on parachains, this includes the Substrate EVM module, Parity’s Frontier, and projects such as Moonbeam. Another initiative is to create a completely new smart contract stack that is native to Substrate. This includes the Substrate Contracts pallet, and the ink! DSL for writing smart contracts.
Learn more about Substrate's compatibility layer with Ethereum smart contracts here: https://github.com/paritytech/frontier

Will Pankiewicz, Master of Validators, Parity Technologies


Q: (Dan) Thanks for all the answers. Now we’ll start going through some staking questions with Will related to validating and nominating on Polkadot. Will - could you introduce yourself, your background, and your role within the Polkadot ecosystem?

A (Will): Sure thing. Like many others, Bitcoin drew me in back in 2013, but it wasn't until Ethereum came that I took the deep dive into working in the space full time. It was the financial infrastructure aspects of cryptocurrencies I was initially interested in, and first worked on dexes, algorithmic trading, and crypto funds. I really liked the idea of "Generalized Mining" that CoinFund came up with, and started to explore the whacky ways the crypto funds and others can both support ecosystems and be self-sustaining at the same time. This drew me to a lot of interesting experiments in what later became DeFi, as well as running validators on Proof of Stake networks. My role in the Polkadot ecosystem as “Master of Validators” is ensuring the needs of our validator community get met.

Q: Cool thanks. Our first community question was "Is it still more profitable to nominate the validators with lesser stake?"

A (Will): It depends on their commission, but generally yes it is more profitable to nominate validators with lesser stake. When validators have lesser stake, when you nominate them this makes your nomination stake a higher percentage of total stake. This means when rewards get distributed, it will be split more favorably toward you, as rewards are split by total stake percentage. Our entire rewards scheme is that every era (6 hours in Kusama, 24 hours in Polkadot), a certain amount of rewards get distributed, where that amount of rewards is dependent on the total amount of tokens staked for the entire network (50% of all tokens staked is currently optimal). These rewards from the end of an era get distributed roughly equally to all validators active in the validator set. The reward given to each validator is then split between the validators and all their nominators, determined by the total stake that each entity contributes. So if you contribute to a higher percentage of the total stake, you will earn more rewards.

Q: What does priority ranking under nominator addresses mean? For example, what does it mean that nominator A has priority 1 and nominator B has priority 6?

A (Will): Priority ranking is just the index of the nomination that gets stored on chain. It has no effect on how stake gets distributed in Phragmen or how rewards get calculated. This is only the order that the nominator chose their validators. The way that stake from a nominator gets distributed from a nominator to validators is via Phragmen, which is an algorithm that will optimally put stake behind validators so that distribution is roughly equal to those that will get in the validator set. It will try to maximize the total amount at stake in the network and maximize the stake behind minimally staked validators.

Q: On Polkadot.js, what does it mean when there are nodes waiting on Polkadot?

**A (Will):**In Polkadot there is a fixed validator set size that is determined by governance. The way validators get in the active set is by having the highest amount of total stake relative to other validators. So if the validator set size is 100, the top 100 validators by total stake will be in the validator set. Those not active in the validator set will be considered “waiting”.

Q: Another question...Is it necessary to become a waiting validator node right now?

A (Will): It's not necessary, but highly encouraged if you actively want to validate on Polkadot. The longer you are in the waiting tab, the longer you get exposure to nominators that may nominate you.

Q: Will current validators for Kusama also validate for Polkadot? How strongly should I consider their history (with Kusama) when looking to nominate a good validator for DOTs?

A (Will): A lot of Kusama validators will also be validators for Polkadot, as KSM was initially distributed to DOT holders. The early Kusama Validators will also likely be the first Polkadot validators. Being a Kusama validator should be a strong indicator for who to nominate on Polkadot, as the chaos that has ensued with Kusama has allowed validators to battle test their infrastructure. Kusama validators by now are very familiar with tooling, block explorers, terminology, common errors, log formats, upgrades, backups, and other aspects of node operation. This gives them an edge against Polkadot validators that may be new to the ecosystem. You should strongly consider well known Kusama validators when making your choices as a nominator on Polkadot.

Q: Can you go into more details about the process for becoming a DOT validator? Is it similar as the KSM 1000 validators program?

A (Will): The Process for becoming a DOT validators is first to have DOTs. You cannot be a validator without DOTs, as DOTs are used to pay transaction fees, and the minimum amount of DOTs you need is enough to create a validate transaction. After obtaining enough DOTs, you will need to set up your validator infrastructure. Ideally you should have a validator node with specs that match what we call standard hardware, as well as one or more sentry nodes to help isolate the validator node from attacks. After the infrastructure is up and running, you should have your Polkadot accounts set up right with a stash bonded to a controller account, and then submit a validate transaction, which will tell the network your nodes are ready to be a part of the network. You should then try and build a community around your validator to let others know you are trustworthy so that they will nominate you. The 1000 validators programme for Kusama is a programme that gives a certain amount of nominations from the Web3 Foundation and Parity to help bootstrap a community and reputation for validators. There may eventually be a similar type of programme for Polkadot as well.
Dan: Thanks a lot for all the answers, Will. That’s the end of the pre-submitted questions and now we’ll open the chat up to live Q&A, and our three team members will get through as many of your questions as possible.
We will take questions related to business development, technology, validating, and staking. For those wondering about DOT:
DOT tokens do not exist yet. Allocations of Polkadot's native DOT token are technically and legally non-transferable. Hence any publicized sale of DOTs is unsanctioned by Web3 Foundation and possibly fraudulent. Any official public sale of DOTs will be announced on the Web3 Foundation website. Polkadot’s launch process started in May and full network decentralization later this year, holders of DOT allocations will determine issuance and transferability. For those who participated in previous DOT sales, you can learn how to claim your DOTs here (https://wiki.polkadot.network/docs/en/claims).


Telegram Community Follow-up Questions Addressed Below


Q: Polkadot looks good but it confuses me that there are so many other Blockchain projects. What should I pay attention in Polkadot to give it the importance it deserves? What are your planning to achieve with your project?

A (Will): Personally, what I think differentiates it is the governance process. Coordinating forkless upgrades and social coordination helps stand it apart.
A (Dieter): The wiki is awesome - https://wiki.polkadot.network/

Q: Over 10,000 ETH paid as a transaction fee , what if this happens on Polkadot? Is it possible we can go through governance to return it to the owner?

A: Anything is possible with governance including transaction reversals, if a network quorum is reached on a topic.
A (Logan): Polkadot transaction fees work differently than the fees on Ethereum so it's a bit more difficult to shoot yourself in the foot as the whale who sent this unfortunate transaction. See here for details on fees: https://w3f-research.readthedocs.io/en/latest/polkadot/Token%20Economics.html?highlight=transaction%20fees#relay-chain-transaction-fees-and-per-block-transaction-limits
However, there is a tip that the user can input themselves which they could accidentally set to a large amount. In this cases, yes, they could proposition governance to reduce the amount that was paid in the tip.

Q: What is the minimum ideal amount of DOT and KSM to have if you want to become a validator and how much technical knowledge do you need aside from following the docs?

A (Will): It depends on what the other validators in the ecosystem are staking as well as the validator set size. You just need to be in the top staking amount of the validator set size. So if its 100 validators, you need to be in the top 100 validators by stake.

Q: Will Web3 nominate validators? If yes, which criteria to be elected?

A (Will): Web 3 Foundation is running programs like the 1000 validators programme for Kusama. There's a possibility this will continue on for Polkadot as well after transfers are enabled. https://thousand-validators.kusama.network/#/
You will need to be an active validator to earn rewards. Only those active in the validator set earn rewards. I would recommend checking out parts of the wiki: https://wiki.polkadot.network/docs/en/maintain-guides-validator-payout

Q: Is it possible to implement hastables or dag with substrate?

A (Logan): Yes.

Q: Polkadot project looks very futuristic! But, could you tell us the main role of DOT Tokens in the Polkadot Ecosystem?

A (Dan): That's a good question. The short answer is Staking, Governance, Bonding. More here: http://polkadot.network/dot-token

Q: How did you manage to prove that the consensus protocol is safe and unbreakable mathematically?

A (Dieter): We have a research teams of over a dozen scientists with PhDs and post-docs in cryptography and distributed computing who do thorough theoretical analyses on all the protocols used in Polkadot

Q: What are the prospects for NFT?

A: Already being built 🙂

Q: What will be Polkadot next roadmap for 2020 ?

A (Dieter): Building. But seriously - we will continue to add many more features and upgrades to Polkadot as well as continue to strongly focus on adoption from other builders in the ecosystem 🙂
A (Will): https://polkadot.network/launch-roadmap/
This is the launch roadmap. Ideally adding parachains and xcmp towards the end of the year

Q: How Do you stay active in terms of marketing developments during this PANDEMIC? Because I'm sure you're very excited to promote more after this settles down.

A (Dan): The main impact of covid was the impact on in-person events. We have been very active on Crowdcast for webinars since 2019, so it was quite the smooth transition to all-online events. You can see our 40+ past event recordings and follow us on Crowdcast here: https://www.crowdcast.io/polkadot. If you're interested in following our emails for updates (including online events), subscribe here: https://info.polkadot.network/subscribe

Q: Hi, who do you think is your biggest competitor in the space?

A (Dan): Polkadot is a metaprotocol that hasn't been seen in the industry up until this point. We hope to elevate the industry by providing interoperability between all major public networks as well as private blockchains.

Q: Is Polkadot a friend or competitor of Ethereum?

A: Polkadot aims to elevate the whole blockchain space with serious advancements in interoperability, governance and beyond :)

Q: When will there be hardware wallet support?

A (Will): Parity Signer works well for now. Other hardware wallets will be added pretty soon

Q: What are the attractive feature of DOT project that can attract any new users ?

A: https://polkadot.network/what-is-polkadot-a-brief-introduction/
A (Will): Buidling parachains with cross chain messaging + bridges to other chains I think will be a very appealing feature for developers

Q: According to you how much time will it take for Polkadot to get into mainstream adoption and execute all the plans set for this project?

A: We are solving many problems that have held back the blockchain industry up until now. Here is a summary in basic terms:
https://preview.redd.it/ls7i0bpm8p951.png?width=752&format=png&auto=webp&s=a8eb7bf26eac964f6b9056aa91924685ff359536

Q: When will bitpie or imtoken support DOT?

A: We are working on integrations on all the biggest and best wallet providers. ;)

Q: What event/call can we track to catch a switch to nPOS? Is it only force_new_era call? Thanks.

A (Will): If you're on riot, useful channels to follow for updates like this are #polkabot:matrix.org and #polkadot-announcements:matrix.parity.io
A (Logan): Yes this is the trigger for initiating the switch to NPoS. You can also poll the ForceEra storage for when it changes to ForceNew.

Q: What strategy will the Polkadot Team use to make new users trust its platform and be part of it?

A (Will): Pushing bleeding edge cryptography from web 3 foundation research
A (Dan): https://t.me/PolkadotOfficial/43378

Q: What technology stands behind and What are its advantages?

A (Dieter): Check out https://polkadot.network/technology/ for more info on our tech stack!

Q: What problems do you see occurring in the blockchain industry nowadays and how does your project aims to solve these problems?

A (Will): Governance I see as a huge problem. For example upgrading Bitcoin and making decisions for changing things is a very challenging process. We have robust systems of on-chain governance to help solve these coordination problems

Q: How involved are the Polkadot partners? Are they helping with the development?

A (Dieter): There are a variety of groups building in the Polkadot ecosystem. Check out http://www.polkaproject.com/ for a great list.

Q: Can you explain the role of the treasury in Polkadot?

A (Will): The treasury is for projects or people that want to build things, but don't want to go through the formal legal process of raising funds from VCs or grants or what have you. You can get paid by the community to build projects for the community.
A: There’s a whole section on the wiki about the treasury and how it functions here https://wiki.polkadot.network/docs/en/mirror-learn-treasury#docsNav

Q: Any plan to introduce Polkadot on Asia, or rising market on Asia?

**A (Will):**We're globally focused

Q: What kind of impact do you expect from the Council? Although it would be elected by token holders, what kind of people you wish to see there?

A (Will): Community focused individuals like u/jam10o that want to see cool things get built and cool communities form

If you have further questions, please ask in the official Polkadot Telegram channel.
submitted by dzr9127 to dot [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

What Is The Dark Web? How Can You Access It? What Will You Find?

What Is The Dark Web? How Can You Access It? What Will You Find?

Dark Net Hacker
DarkNetHacker.net
What is the dark web? How to access it and what you'll find
The dark web is part of the internet that isn't visible to search engines and requires the use of an anonymizing browser called Tor to be accessed.
Dark web definition
The dark web is a part of the internet that isn't indexed by search engines. You've no doubt heard talk of the “dark web” as a hotbed of criminal activity — and it is. Researchers Daniel Moore and Thomas Rid of King's College in London classified the contents of 2,723 live dark web sites over a five-week period in 2015 and found that 57% host illicit material.

A 2019 study, Into the Web of Profit, conducted by Dr. Michael McGuires at the University of Surrey, shows that things have become worse. The number of dark web listings that could harm an enterprise has risen by 20% since 2016. Of all listings (excluding those selling drugs), 60% could potentially harm enterprises.

You can buy credit card numbers, all manner of drugs, guns, counterfeit money, stolen subscription credentials, hacked Netflix accounts and software that helps you break into other people’s computers. Buy login credentials to a $50,000 Bank of America account for $500. Get $3,000 in counterfeit $20 bills for $600. Buy seven prepaid debit cards, each with a $2,500 balance, for $500 (express shipping included). A “lifetime” Netflix premium account goes for $6. You can hire hackers to attack computers for you. You can buy usernames and passwords.

But not everything is illegal, the dark web also has a legitimate side. For example, you can join a chess club or BlackBook, a social network described as the “the Facebook of Tor.”


Note: This post contains links to dark web sites that can only be accessed with the Tor browser, which can be downloaded for free at https://www.torproject.org.

Deep web vs. dark web: What’s the difference?
The terms “deep web” and “dark web” are sometimes used interchangeably, but they are not the same. Deep web refers to anything on the internet that is not indexed by and, therefore, accessible via a search engine like Google. Deep web content includes anything behind a paywall or requires sign-in credentials. It also includes any content that its owners have blocked web crawlers from indexing.

Medical records, fee-based content, membership websites, and confidential corporate web pages are just a few examples of what makes up the deep web. Estimates place the size of the deep web at between 96% and 99% of the internet. Only a tiny portion of the internet is accessible through a standard web browser—generally known as the “clear web”.

RECOMMENDED WHITEPAPERS
2020 Modern Backup Buyers’ Guide

Business continuity for remote workers

10 Reasons Why 15,000+ Businesses Point DNS to Cisco Umbrella

The dark web is a subset of the deep web that is intentionally hidden, requiring a specific browser—Tor—to access, as explained below. No one really knows the size of the dark web, but most estimates put it at around 5% of the total internet. Again, not all the dark web is used for illicit purposes despite its ominous-sounding name.


Dark web tools and services that present enterprise risk
The Into the Web of Profit report identified 12 categories of tools or services that could present a risk in the form of a network breach or data compromise:

Infection or attacks, including malware, distributed denial of service (DDoS) and botnets
Access, including remote access Trojans (RATs), keyloggers and exploits
Espionage, including services, customization and targeting
Support services such as tutorials
Credentials
Phishing
Refunds
Customer data
Operational data
Financial data
Intellectual property/trade secrets
Other emerging threats
The report also outlined three risk variables for each category:

Devaluing the enterprise, which could include undermining brand trust, reputational damage or losing ground to a competitor
Disrupting the enterprise, which could include DDoS attacks or other malware that affects business operations
Defrauding the enterprise, which could include IP theft or espionage that impairs a company's ability to compete or causes a direct financial loss
Dark web browser
All this activity, this vision of a bustling marketplace, might make you think that navigating the dark web is easy. It isn’t. The place is as messy and chaotic as you would expect when everyone is anonymous, and a substantial minority are out to scam others.

Accessing the dark web requires the use of an anonymizing browser called Tor. The Tor browser routes your web page requests through a series of proxy servers operated by thousands of volunteers around the globe, rendering your IP address unidentifiable and untraceable. Tor works like magic, but the result is an experience that’s like the dark web itself: unpredictable, unreliable and maddeningly slow.

[ Is your data being sold? What you need to know about monitoring the dark web. | Get the latest from CSO by signing up for our newsletters. ]

Still, for those willing to put up with the inconvenience, the dark web provides a memorable glimpse at the seamy underbelly of the human experience – without the risk of skulking around in a dark alley.

Dark web search engine
Dark web search engines exist, but even the best are challenged to keep up with the constantly shifting landscape. The experience is reminiscent of searching the web in the late 1990s. Even one of the best search engines, called Grams, returns results that are repetitive and often irrelevant to the query. Link lists like The Hidden Wiki are another option, but even indices also return a frustrating number of timed-out connections and 404 errors.

Dark web sites
Dark web sites look pretty much like any other site, but there are important differences. One is the naming structure. Instead of ending in .com or .co, dark web sites end in .onion. That’s “a special-use top level domain suffix designating an anonymous hidden service reachable via the Tor network,” according to Wikipedia. Browsers with the appropriate proxy can reach these sites, but others can’t.

Dark web sites also use a scrambled naming structure that creates URLs that are often impossible to remember. For example, a popular commerce site called Dream Market goes by the unintelligible address of “eajwlvm3z2lcca76.onion.”

Many dark websites are set up by scammers, who constantly move around to avoid the wrath of their victims. Even commerce sites that may have existed for a year or more can suddenly disappear if the owners decide to cash in and flee with the escrow money they’re holding on behalf of customers.

Law enforcement officials are getting better at finding and prosecuting owners of sites that sell illicit goods and services. In the summer of 2017, a team of cyber cops from three countries successfully shut down AlphaBay, the dark web’s largest source of contraband, sending shudders throughout the network. But many merchants simply migrated elsewhere.

The anonymous nature of the Tor network also makes it especially vulnerable to DDoS, said Patrick Tiquet, Director of Security & Architecture at Keeper Security, and the company’s resident expert on the topic. “Sites are constantly changing addresses to avoid DDoS, which makes for a very dynamic environment,” he said. As a result, “The quality of search varies widely, and a lot of material is outdated.”

SALTED HASH
Get a hands-on, inside look at the dark web | Salted Hash Ep 25
Commerce on the dark web
The dark web has flourished thanks to bitcoin, the crypto-currency that enables two parties to conduct a trusted transaction without knowing each other’s identity. “Bitcoin has been a major factor in the growth of the dark web, and the dark web has been a big factor in the growth of bitcoin,” says Tiquet.

Nearly all dark web commerce sites conduct transactions in bitcoin or some variant, but that doesn’t mean it’s safe to do business there. The inherent anonymity of the place attracts scammers and thieves, but what do you expect when buying guns or drugs is your objective?

Dark web commerce sites have the same features as any e-retail operation, including ratings/reviews, shopping carts and forums, but there are important differences. One is quality control. When both buyers and sellers are anonymous, the credibility of any ratings system is dubious. Ratings are easily manipulated, and even sellers with long track records have been known to suddenly disappear with their customers’ crypto-coins, only to set up shop later under a different alias.

Most e-commerce providers offer some kind of escrow service that keeps customer funds on hold until the product has been delivered. However, in the event of a dispute don’t expect service with a smile. It’s pretty much up to the buyer and the seller to duke it out. Every communication is encrypted, so even the simplest transaction requires a PGP key.

Even completing a transaction is no guarantee that the goods will arrive. Many need to cross international borders, and customs officials are cracking down on suspicious packages. The dark web news site Deep.Dot.Web teems with stories of buyers who have been arrested or jailed for attempted purchases.

SECURITY
How the dark web has gone corporate
Is the dark web illegal?
We don’t want to leave you with the impression that everything on the dark web is nefarious or illegal. The Tor network began as an anonymous communications channel, and it still serves a valuable purpose in helping people communicate in environments that are hostile to free speech. “A lot of people use it in countries where there’s eavesdropping or where internet access is criminalized,” Tiquet said.

If you want to learn all about privacy protection or cryptocurrency, the dark web has plenty to offer. There are a variety of private and encrypted email services, instructions for installing an anonymous operating system and advanced tips for the privacy-conscious.

There’s also material that you wouldn’t be surprised to find on the public web, such as links to full-text editions of hard-to-find books, collections of political news from mainstream websites and a guide to the steam tunnels under the Virginia Tech campus. You can conduct discussions about current events anonymously on Intel Exchange. There are several whistleblower sites, including a dark web version of Wikileaks. Pirate Bay, a BitTorrent site that law enforcement officials have repeatedly shut down, is alive and well there. Even Facebook has a dark web presence.

“More and more legitimate web companies are starting to have presences there,” Tiquet said. “It shows that they’re aware, they’re cutting edge and in the know.”

There’s also plenty of practical value for some organizations. Law enforcement agencies keep an ear to the ground on the dark web looking for stolen data from recent security breaches that might lead to a trail to the perpetrators. Many mainstream media organizations monitor whistleblower sites looking for news.

Staying on top of the hacker underground
Keeper’s Patrick Tiquet checks in regularly because it’s important for him to be on top of what’s happening in the hacker underground. “I use the dark web for situational awareness, threat analysis and keeping an eye on what’s going on,” he said will. “I want to know what information is available and have an external lens into the digital assets that are being monetized – this gives us insight on what hackers are targeting.”

If you find your own information on the dark web, there’s precious little you can do about it, but at least you’ll know you’ve been compromised. Bottom line: If you can tolerate the lousy performance, unpredictable availability, and occasional shock factor of the dark web, it’s worth a visit. Just don’t buy anything there.
submitted by hireahackerpro to u/hireahackerpro [link] [comments]

Proof Of Work Explained

Proof Of Work Explained
https://preview.redd.it/hl80wdx61j451.png?width=1200&format=png&auto=webp&s=c80b21c53ae45c6f7d618f097bc705a1d8aaa88f
A proof-of-work (PoW) system (or protocol, or function) is a consensus mechanism that was first invented by Cynthia Dwork and Moni Naor as presented in a 1993 journal article. In 1999, it was officially adopted in a paper by Markus Jakobsson and Ari Juels and they named it as "proof of work".
It was developed as a way to prevent denial of service attacks and other service abuse (such as spam on a network). This is the most widely used consensus algorithm being used by many cryptocurrencies such as Bitcoin and Ethereum.
How does it work?
In this method, a group of users competes against each other to find the solution to a complex mathematical puzzle. Any user who successfully finds the solution would then broadcast the block to the network for verifications. Once the users verified the solution, the block then moves to confirm the state.
The blockchain network consists of numerous sets of decentralized nodes. These nodes act as admin or miners which are responsible for adding new blocks into the blockchain. The miner instantly and randomly selects a number which is combined with the data present in the block. To find a correct solution, the miners need to select a valid random number so that the newly generated block can be added to the main chain. It pays a reward to the miner node for finding the solution.
The block then passed through a hash function to generate output which matches all input/output criteria. Once the result is found, other nodes in the network verify and validate the outcome. Every new block holds the hash of the preceding block. This forms a chain of blocks. Together, they store information within the network. Changing a block requires a new block containing the same predecessor. It is almost impossible to regenerate all successors and change their data. This protects the blockchain from tampering.
What is Hash Function?
A hash function is a function that is used to map data of any length to some fixed-size values. The result or outcome of a hash function is known as hash values, hash codes, digests, or simply hashes.
https://preview.redd.it/011tfl8c1j451.png?width=851&format=png&auto=webp&s=ca9c2adecbc0b14129a9b2eea3c2f0fd596edd29
The hash method is quite secure, any slight change in input will result in a different output, which further results in discarded by network participants. The hash function generates the same length of output data to that of input data. It is a one-way function i.e the function cannot be reversed to get the original data back. One can only perform checks to validate the output data with the original data.
Implementations
Nowadays, Proof-of-Work is been used in a lot of cryptocurrencies. But it was first implemented in Bitcoin after which it becomes so popular that it was adopted by several other cryptocurrencies. Bitcoin uses the puzzle Hashcash, the complexity of a puzzle is based upon the total power of the network. On average, it took approximately 10 min to block formation. Litecoin, a Bitcoin-based cryptocurrency is having a similar system. Ethereum also implemented this same protocol.
Types of PoW
Proof-of-work protocols can be categorized into two parts:-
· Challenge-response
This protocol creates a direct link between the requester (client) and the provider (server).
In this method, the requester needs to find the solution to a challenge that the server has given. The solution is then validated by the provider for authentication.
The provider chooses the challenge on the spot. Hence, its difficulty can be adapted to its current load. If the challenge-response protocol has a known solution or is known to exist within a bounded search space, then the work on the requester side may be bounded.
https://preview.redd.it/ij967dof1j451.png?width=737&format=png&auto=webp&s=12670c2124fc27b0f988bb4a1daa66baf99b4e27
Source-wiki
· Solution–verification
These protocols do not have any such prior link between the sender and the receiver. The client, self-imposed a problem and solve it. It then sends the solution to the server to check both the problem choice and the outcome. Like Hashcash these schemes are also based on unbounded probabilistic iterative procedures.
https://preview.redd.it/gfobj9xg1j451.png?width=740&format=png&auto=webp&s=2291fd6b87e84395f8a4364267f16f577b5f1832
Source-wiki
These two methods generally based on the following three techniques:-
CPU-bound
This technique depends upon the speed of the processor. The higher the processor power greater will be the computation.
Memory-bound
This technique utilizes the main memory accesses (either latency or bandwidth) in computation speed.
Network-bound
In this technique, the client must perform a few computations and wait to receive some tokens from remote servers.
List of proof-of-work functions
Here is a list of known proof-of-work functions:-
o Integer square root modulo a large prime
o Weaken Fiat–Shamir signatures`2
o Ong–Schnorr–Shamir signature is broken by Pollard
o Partial hash inversion
o Hash sequences
o Puzzles
o Diffie–Hellman–based puzzle
o Moderate
o Mbound
o Hokkaido
o Cuckoo Cycle
o Merkle tree-based
o Guided tour puzzle protocol
A successful attack on a blockchain network requires a lot of computational power and a lot of time to do the calculations. Proof of Work makes hacks inefficient since the cost incurred would be greater than the potential rewards for attacking the network. Miners are also incentivized not to cheat.
It is still considered as one of the most popular methods of reaching consensus in blockchains. Though it may not be the most efficient solution due to high energy extensive usage. But this is why it guarantees the security of the network.
Due to Proof of work, it is quite impossible to alter any aspect of the blockchain, since any such changes would require re-mining all those subsequent blocks. It is also difficult for a user to take control over the network computing power since the process requires high energy thus making these hash functions expensive.
submitted by RumaDas to u/RumaDas [link] [comments]

[UPDATE][M] Ryo Currency 0.5.0.0 "Fermi Paradox"

[UPDATE][M] Ryo Currency 0.5.0.0
https://preview.redd.it/o6o6y8g9rwi41.jpg?width=1920&format=pjpg&auto=webp&s=fe52faff108d163f476907e004cac1ef47aaa1a9
[M] - Mandatory. The update contains security fixes or contains fork update (wallet will stop working after some height reach).
IMPORTANT: The latest version is 0.5.0.1 (contains minor update after 0.5.0.1)
Meet Ryo Currency 0.5.0.0 update - Fermi Paradox. In this update we will discuss 3 updates and do one announcement in the source code, 2 of them will be the first among any Cryptonote projects:
  • Wallet Scan speedup thanks to ECC and multi-threading library. Increased wallet scan speed when processing blockchain. New Elliptic Curve Cryptography library combined with implemented multi-threading that ustilises user's CPU results in reduced block verification up to 5x times compared with previous modes.
  • Plateau emission curve. Ryo's block reward changes every 6-months following a "Plateau Curve" distribution model. The modification of emission curve was initiated and debated with Ryo community. The following fork will finalise and implement that change.Notice: the difference between previous and this model will take effect at block height 394470.Read more about Ryo plateau emission curve
  • Various code edits, refactoring and minor fixes. There are multiple code fixes and edits that could be considered minor when looked in particular, but when looked in general - result in more than 35.000 lines of code being changed making core code more clean, optimised and bugfixed.Check Ryo Github repository
https://preview.redd.it/qv27xxdarwi41.png?width=2000&format=png&auto=webp&s=34836461eb348619f37f75fbc91e94a58dc065f8
Research and studies of Ryo Dev team showed that current ring signature technology as it is - is obsolete and has too many flaws to be considered as a means for reaching the goal of the second level of of privacy. Therefore we will be replacing ring signatures with second generation ZK-proofs technology in observable future and temporarily downgrade privacy level to 1.
In general, you can consider privacy levels like that:
  • level 0 - everyone can look into your wallet and know your transactions (BTC level)
  • level 1 - nobody can see inside of your wallet, but each note has a serial number (yes, this is real life money level and in CN coins is implemented using stealth addresses)
  • level 2 - notes you have don't have a serial number to a guy that gave you one, and no-one can't know if you spent it later (In CN coins it is implemented using ring signatures - which are the failing ones)
What we are saying is over the past year or two, researches stripped ring signatures of their privacy properties so much, that we think it is no longer fair to say that we (or Monero, which is even worse since it has even smaller ring size compared to Ryo) or any other CN project that uses it - meet the level 2 of privacy.
So, summarising in non-tech words what does it mean - when you are doing a transaction and want to imagine how it looks like in system:
  • bitcoin - "I spent output 10, worth 1 BTC and output 22, worth 0.5 BTC"
  • ring signature (current CN coins) - "I spent output 10, 14, 18 or 20, and output 16, 18, 19, or 22"
  • zk-proof - "I spent something."

Fork is scheduled on block 362000: you can check fork countdown on Ryo Currency website

Please update your wallets before this block, or your previous wallet will stop synchronising after the block 362000:
  • Ryo Wallet Atom: download latest Atom installer when annouced update to version 1.5.0, start it and perform reinstall.
  • Ryo cli binaries: download or compile from source updated binaries from Github version 0.5.0.0 and unzip it, and place your wallet key files in new folder.
  • Pool owners and exchanges are notified about updating their nodes to the latest version before the fork.
Questions you might have regarding the fork:
  • What will happen with mining algorithm - will it change or what does "fork" mean - coin is split on 2? No, "fork" basically means major code update that is being activated on a specified block height. There will be no mining algorithm change or chainsplit.
  • Ryo roadmap indicates that you had in plans reaching 100x ring sizes. In light of future introduction of ZK-proofs does it mean that this is not aplicable? Yes, we eventually will be replacing ring signature technology on ZK-proofs, which is more fundamental change than trying to "beat dead horse" with ring signatures.
  • What about atomic swaps? Ryo roadmap indicates it being planned, is it still possible with introducing ZK-proofs? Yes it is! And we aim to implement this feature after all necessary updates in core code. It is important to have everything implemented and tested before adding that feature.
  • What is a ZK-proof? ZK stands for zero-knowledge. In cryptography, a zero-knowledge proof is a method by which one party (the prover) can prove to another party (the verifier) that they know a value x, without conveying any information apart from the fact that they know the value xYou can read more about zero-knowledge proof (with real life examples) here.
  • Will blockchain grow faster (what about tx size) when moving to ZK-proofs? Overall, transactions and blocks using ZK-proofs will be even smaller in size than pre-fork ring signatures with bulletproofs! Plus it enables transactions to be aggregated together - this is obviously a major scalability gain for Ryo Currency.
  • I heard or as far I understand that ZK-proofs are somewhat less private? Does it mean that you are not privacy-oriented project anymore? No, in short - we decided to do this change to second gen. ZK-proofs, because ring signatures as is are too weak on providing enough for us default level of privacy and overall are considered now as an obsolete technology. So we don't want to say that we have a privacy level of 2, when research shows that it is not.
  • Ok, after 0.5.0.0 fork - will we be using uniform payment ID-s to do transactions on exchanges? Yes. There are no changes regarding usage of payment ID-s and integrated addresses. We will be still using ring signatures, but also are announcing our goal on moving to ZK-proofs.
  • What else is there in plans/ideas you have in development of Ryo? Besides all plans and development ongoing with Ryo (wallets, infrastructure, core code and researches) we also developed and improve Mining platform RagerX. It is a all-in-one mining platform that unites a miner, pplns pool, OS, GUI flasher utillity, pool frontend and has advanced social features as well as 2 level affiliate program. In observable future we will add Cryptonight-GPU mining possibillity.We are implementing RagerX so people can mine CPU coins and Ryo simultaneously. Which means more eyes on Ryo, especially from fresh members.
  • Are the ring signature issues that have been discovered are applicable to other ring signature based coins like Monero? Yes.
https://preview.redd.it/x5jqtb8brwi41.png?width=1000&format=png&auto=webp&s=06a0de33b10014e0fdf1b847939718475cbe6fbe
submitted by RyocurrencyRu to ryocurrency [link] [comments]

Looking for opinions on my New Warriors re-write by a non-fan/non-comic reader

So I'm not a comic reader but the news of the various happenings with in the comic industry tend to peek my dabbling interests of political science and marketing.
So when I saw the new "New Warriors" backlash I couldn't get it out of head that night so I laid in bed for the next 3 hours just working out what could make the characters more interesting.
I recognize that by not being a comic reader beyond Dilbert I'm probably making a lot of mistakes but I'm honestly curious as to what actual comic readers would think of my changes.
I'm leaving actual character designs to far more talented people though.
So to start off with "Screentime" I came up with the idea that instead of some "Internet Gas" bullshit that instead he would have a large optical data storage crystal shatter over his head and embed thousands of various sized shards of the nanocrystals that make up one of these storage crystals.
Idea came from this Wikipedia: https://en.wikipedia.org/wiki/5D_optical_data_storage
Now where I take it and twist it from reality is that all of these shards pickup various electromagnetic waves like Wi-Fi, Radio, Cell towers, etc... and being embedded in his brain means that he is still connected to the internet 24/7 unless he is in a Faraday Cage. Now as for his character I wanted to depict a teen that is both overwhelmed by the amount of information he now has sometime unwillingly cascading through his head kind of like ADD and the fact that he can find out everyone’s secrets both good and bad.
Every text, every camera, every file server, if it has a electronic connection of some sort even a very low powered wireless one if he is in range he can access it regardless of passwords or firewalls. I wanted to highlight the he would make his own personal code of conduct not to speak of any of the things he now knows unless he is specifically working on solving a particular crime. So if he is searching for a murder and finds out that the murders best friend is a rapist he wouldn't tell anyone of this finding as its beyond the scope of his search.
At times I would show that the weight of basically trusting himself not to violate everyone's privacy unwarranted is a unspeakable burden for a teenager. However as a teenager he would find silver linings to his power, like literally unlimited porn of every type imaginable, watching movies right off of the studios hard drives, mining bitcoin in his sleep, most importantly for his combat ability being able to access a vast library of 3D printed weapon designs and the machines to produce these weapons thus meaning that he is armed with the latest and greatest small arms.
As I mentioned before if Screentime is in a Faraday Cage he loses his internet connection this can be used to give him a break from the overwhelming information he is constantly exposed to help him sleep or by a villain trying to remove his intelligence gathering ability.
The only other thing that can block his reception is his Team mate Deadzone's shields. So next up on my rewrite hit parade is Snowflake and the now renamed Deadzone. Power wise Deadzone is the by far the most changed. Where before he could only raise shields if someone he cared for was in danger, which is the single biggest load of shit ever. Now he can raise various sized shields and shield bubbles at will.
The thing about his shields is that they are all 3D shields meaning that while they are however tall and wide as Deadzone needs they are all 1 inch thick. Within these shields is a perfect void: No matter and no energy within. This means that say a Cyclops like laser blast is absorbed by this void until you get to a point where the interior of the shield is either full of energy or matter at which point the shield should be deactivated.
However Deadzone can run the risk of holding the shield longer and suddenly the shield becomes an explosive as this void is now so full of energy or matter that only Deadzones powers are holding them together. This has its tactical uses but it can be hard to judge as if he releases the shield to soon or too fast then he can create a vacuum bomb inadvertently. This requires an extreme amount of focus if Deadzone is to avoid collateral damage and if he makes a shield too big for him to hold and/or it doesn't receive enough damage to fill up the void completely before he drops it he can easily do more harm than good.
I should also note that while I mostly stayed away from speaking on the art design because I don't have enough skill to come up with a better original design than spandex suits. Deadzone and his powers are no longer pink. He looks the typical African-American athlete and his shields are pitch black due to their void like nature.
Snowflake is actually more or less unchanged as far as powers go being your typical cryokinetic. The biggest change I would make is remove her woke pro-noun nonsense as that doesn't add anything to the character.
Now the biggest change to both of these characters is their relationship to each other and how it effects how they interact with the rest of the world. So in some of the art that has been posted made them look to be far more than just brother and sister and seeing that they otherwise have relatively little less to make them standout as characters I decided to take that implied relationship and go straight for the teeth.
So yes they are in a fully active incestuous relationship, this massive dark secret has made them comparatively insular especially when it comes to making friends however its also given them a different perspective on life. They see the penalty for being underaged superheroes as a comparative slap on the wrist compared to their main “crime” and thus show a willingness to engage in their work that is matched by few others.
They are more emphatic then most of the other team members save for Screentime but that is because he probably already knows why someone is doing or acting the way they are. They are not woke however they simply accept people as they are and move on, not trying to draw attention lest that attention get turned on them and their secret gets out. This is their single greatest fear beyond loosing one another.
The last character that I managed to rewrite is Trailblazer. She remains the leader and the “mother” of the group much as she had done in her foster home. She volunteers a lot both to help others and to hide the crippling depression of taking on so many burdens. This however has still reared it ugly head in her eating habits leading to her heavy build.
After she gets sucked into the superhero role she one night hears a endless chanting coming from a box of things she had left from her parents among which is her grandfather's backpack. This backpack is a pocket dimension but beyond that time within the backpack can slow down greatly as much as 1000 years inside the backpack can pass for every second in the real world if the user so wishes it.
Trailblazer sticks her head inside this backpack and falls in and meets a ancient Native American warrior ancestor this is the spirit that gives the backpack its power. He offers to train her inside the backpack much like Goku in DragonballZ using the Hyperbolic Time Chamber to do a years worth of training in only a day.
Trailblazer takes him up on his offer and for the next 5 years or 5 hours in reality she is put through a grueling training regimen that turns the overweight teenager into a toned though still “thic” warrior. She is gifted a Spirit Tomahawk to serve as her permanent weapon that is always at her side as a symbol of completing her training and the new connection that she has with her ancestors.
Though armed with this Tomahawk she still can receive or summon weapons from her backpack though her control of this ability right now is limited to simple melee weapons or bows and arrows unless she has time to sit down and focus on the backpack completely to summon a more complex object like a gun and its ammo.
B-Negitive is where I finally threw in the towel. I have no idea who this Michael Morbius is and I couldn't see of any redeeming character trait or feature to draw from. Maybe if he was more human I could do a teenage Blade but I don't know how as a upstart writer to pull that off from the current state without just scraping the character completely.
I'm looking for opinions and feedback as I have little else to do while on shelter-in-place and when I posted this in Marvel I got nothing after 5 days, I'm really curious to see if I was on to something.
submitted by Hybris51129 to comicbooks [link] [comments]

Can Any Current Crypto Commodity Ever Be Used As A General Currency?

“In the long run, we are all dead. Economists set themselves too easy, too useless a task if in tempestuous seasons they can only tell us that when the storm is long past the ocean will be flat again.” - John Maynard Keynes

Cryptocurrency Supply Algorithms And The Equation Of Exchange

Although I am a proponent for Bitcoin and view it as a good store-of-value, my belief is that all of the algorithms for cryptocurrency supply models that I have seen to date are not amenable to creating a cryptocurrency useful as a general currency. That is as a means for exchange-of-value as opposed to store-of-value. The following is my brief description of the models that I am aware of, followed by an explanation of why I believe they are not useful for as general currencies. At the bottom, I make a concluding remark on what I believe is a missing feature needed to realize a general currency.

Coin Supply Algorithms

N+1
In an N+1 algorithm, each time a block is produced, a constant incentive reward is added to the supply of coins. This means explicitly that the size of the coin supply will grow forever, unlimited. This sounds pretty good on the surface. If you are a miner, you are guaranteed that there will always be an incentive reward available for mining.
If we look at this from a total coin supply viewpoint, and a little high school math, the normalized change in supply is:
N+1/N
We then want to ask the question, how fast is the coin supply changing, as N goes to infinity since we are assuming that blocks are produced forever. This is:
Lim N->∞ N+1/N
Where N is the number of blocks produced. By L’Hôpital’s rule for those that remember a little highschool calculus (I had to look it up), we can take the derivatives of the numerator and denominator which results in 1/1 = 1. In the limit at infinity, the coin supply is a constant value, even though theoretically it grows forever.
Since infinity is only theoretical, what does this look like for blockchain use cases:
To give a feel for it, imagine that we are at the following 4 stages: 10 blocks have been produced; 100 blocks have been produced; 1000 blocks have been produced, and 10000 blocks have been produced. Adding one reward at each stage gives the following percent change in coin supply:
1 — (10 + 1)/10 = 10%
1 — (100+1)/100 = 1%
1 — (1000+1)/1000 = .1%
1 — (10000+1)/10000 = .01%
This demonstrates that the change in coin supply quickly dwindles to an insignificant amount, even though it continues to grow forever. To put this another way, the addition of each new incentive reward quickly becomes a very small fraction of the total coin supply. The coin supply can be thought of as relatively constant.
N + M*N/2T or N(1+M/2T)
T is units of time in discrete steps, and M is the number of blocks produced at each step. This is essentially the Bitcoin model. To make this clearer let’s assume that there is only 1 block produced at each step. This becomes N + N/2T or N(1+1/2T).
If we replace 2T with a new variable K, then this becomes:
N(1+1/K)
Where K increases forever. The summation of 1/K is the harmonic series and increases forever. Therefore, just like N+1 above, N(1+1/K) or N+N/K also increases forever. As with N+1, the rate of increase of the coin supply is then:
(N(1+1/K))/N
This is more simply 1 + 1/K. Thus, as K grows, we can see that the rate of increase tends towards zero as well. Further, since 1/K becomes a smaller and smaller fraction, eventually representing this as a value in a computer becomes impossible. For example, Bitcoin’s smallest fraction is 1 satoshi. When 1/K becomes smaller than 1 satoshi it will no longer be possible to have an incentive reward for a single block produced.
Given that both coin supply algorithms tend towards a relatively constant supply, in terms of use as a currency, we can view both as essentially equivalent. The only difference is how fast the supply tends towards a constant value, where the Bitcoin model is faster.
N
A third coin supply algorithm is a simple constant amount created in the genesis block. The coins are usually distributed using an airdrop or similar model. Since coins are not being created, the coin supply is by definition constant. If the distribution model used is an incentive reward model to distribute from the pool of coins, it is indistinguishable from one of the above 2 models. If the distribution model is a one-time event, such that all the coins are distributed then there is no incentive reward model.
From a viewpoint of use of currency all 3 models described above can be thought of as equivalent, given enough blocks have been produced for the first 2 models.

Marked To External Asset

There is the fourth model for coin supply which is intended to mark the value of the coin to an external index of some kind. This may be a physical asset like an ounce of gold, or another commodity. In this model, the coin can explicitly represent a unit of the external asset such as an ounce of gold. Regardless of whether the coin can be exchanged for the underlying asset or not, given that supply of commodities such as gold are constantly following the same mining algorithms as above, the marked to asset model is a constant coin supply model. If the distribution model used is an incentive reward model, then it is similar to the third model.

Marked To Value Of External Asset

There is a fifth model for coin supply where the value of the coin is marked to the value of an external asset like the USD, instead of the supply of the external asset, as was the case for marking to a commodity. In this model, the coin supply is changed to reflect the exchange rate of the coin against the value of the external asset. The objective is to keep the exchange rate constant on average over time. For example: assuming the objective is a 1-to-1 exchange between the coin and the USD, then if the coin’s value increases above the objective, more coins are printed, and vice-versa. That is, if the value of the coin decreases, given some means (i.e. burning), the coin supply is decreased to bring the exchange rate towards the objective.
In this model, the coin supply is not fixed but varies with the exchange rate. To the extent that the value of the external asset is relatively constant, and the value of the coin is relatively constant the coin supply will be relatively constant.
Although marking to the USD would seem to be a good idea, given that it is called a “reserve currency”, the USD is intentionally subject to inflation, theoretically, the coin to USD exchange will continue to decrease, requiring the coin supply to be decreased to maintain the objective of a constant exchange rate. Over time, this model can be viewed as decreasing the coin supply if marked to the inflationary external asset value.

Comparing Coin Supply Models

In summary, of the five models described above, four of them are essentially variations on a constant coin supply using various means to distribute the coin, while the fifth tries to keep the value of the coin constant against an external asset value, by managing the supply of the coin.
The equation of exchange: M * V = P * Y[1] tells us that if the amount of money supply, M, (i.e. the coin supply) is constant, and the velocity of money is relatively constant, then an increase in demands for goods (Y), will cause a decrease in the price (P), price deflation. That is, with a fixed coin supply the price of goods is expected to drop, thus increasing the value of the coin. Bitcoin’s increase in value is an example of this. (The Bitcoin ledger does not have the means to determine either prices (P) or goods (Y). Instead, I am inferring from the increase in the value of bitcoins that an increase in demand for Y is occurring. There are possible other explanations.)
However, it should be noted that in order for the equation of exchange to be valid, the assumption of the velocity of money is relatively constant must hold. If holders of the coin stop using it as a currency for the exchange of value, then the M * V = M * 0 = 0. There is no price in that coin for any goods or services. That is, the value of the coin collapses.
Conversely, if the velocity of the coin were to increase significantly, then this creates effectively more available coin, resulting in the price (P) of the goods and services (Y) to increase. This causes price inflation, which encourages coin holders to spend their coin as fast as possible to avoid losing value in the coin. As the price of goods becomes excessive, people shift from the coin to other forms of currency. As this happens, once more a collapse happens.
At an equilibrium point, the coin supply is constant, the velocity is constant, the demand for goods and services is constant, and therefore the price would be constant. At such an equilibrium point, a constant coin supply would be ideal. However, we can observe throughout history that such an equilibrium point is never reached.
Given any sort of constant coin supply, the value of the coin is expected to vary unpredictably and often wildly. Of the 5 models, the first 4 will always be subject to this. Although this may be interesting for speculators, usefulness for general currency is questionable.
The fifth model is to manage the coin supply against an external asset value. In essence, this is a substitution of the coin for the asset. Provided that the coin supply can be managed to reflect the objective exchange rate, the value of the coin should be stable relative to the stability of the external asset value.
However, in my opinion, this marking of value does not take into account exchanges that are wholly internal to the coin and its blockchain. The transfer of a coin balance from one account to another implies an exchange of value, thus the equation of exchange applies internally to the blockchain. This exchange of value is independent of the exchange rate of the coin value versus the external asset value. Thus, the coin supply can be seen as independent of the exchange of value on the blockchain.
Given this assumption, we can make the simplifying assumption that the coin supply is relatively constant with respect to the exchange of value on the blockchain. As a result, one would expect that even though the coin supply is managed against the exchange rate with an external asset, its value can still fluctuate wildly, beyond the ability of coin supply management to compensate. This, in turn, will impact the exchange rate, destroying the intended objective.
As a natural consequence, even with the approach of marking the value of the coin to external asset value, such as the USD, the expected volatility limits the usefulness of the coin as a currency.

Towards A General Currency

As stated in the introduction, I believe that none of the cryptocurrency models described are viable for use as general currencies. In my opinion, my brief non-rigorous analysis above demonstrates this likely to be true. The question remains, what else is needed to create a cryptocurrency that is viable as a general currency.
The equation of exchange shows us what is missing directly: In the equation M * V = P * Y, we can say that on every blockchain we can know the values of M and V directly. The account ledger explicitly shows us this, (ignoring encrypted exchanges). What we do not know is the other side of the equation. We do not know either price (P) or goods and services (Y) for any exchanges that are internal to the blockchain, that is between accounts on the blockchain.
If we compare cryptocurrencies with national fiat currencies, and cryptocurrency exchanges with foreign exchanges, we can see that the foreign exchanges relate the difference in prices in related economies. In comparison, the cryptocurrency exchanges appear to only relate the difference in demand for the cryptocurrencies themselves. This demand only manifests itself during the exchange of cryptocurrencies for each other and between fiat and cryptocurrencies and vice-versa.
It is my position that because the internal use of cryptocurrencies on their own blockchains is currently hidden, none of the above coin supply models will create a currency stable enough to be useful as a general currency. If/when a cryptocurrency model is created that takes into account the currently hidden internal exchange of value, then we will have realized a general currency.
[1] https://en.wikipedia.org/wiki/Equation_of_exchange
submitted by PrasagaOfficial to u/PrasagaOfficial [link] [comments]

Bitcoin: Beyond The Bubble - Full Documentary Is Bitcoin Done? John Biggs Asks Xapo, The New York Times, and BTCChina SuburbanTool Inc - YouTube What is Blockchain ? - Explained (BEST ANIMATION) What You Should Know About the Coming Bitcoin Halving

The number of Bitcoins generated per block starts at 50 and is halved every 210,000 blocks (about four years). Bitcoin transactions are broadcast to the network by the sender, and all peers trying to solve blocks collect the transaction records and add them to the block they are working to solve. Miners get incentive to include transactions in The current block size limits the Bitcoin use to 4-7 transactions per second. This can force regular users to compete for transactions by increasing the fees, pricing some users out of the network, once Bitcoin is popular enough. A hard fork requires waiting for sufficient consensus. Bitcoin’s first block halving happened on November 28, 2012. The block reward dropped from 50 bitcoins per block to 25 per block. The price later climbed to $260 per BTC in April 2013, followed by $1,163 per BTC in November 2013. It is unclear, however, whether these price rises were directly related to the block reward halving. Whoever mines the block decides which bitcoin addresses or scripts to send the block reward to. The block reward size started at 50 and is halved every 210,000 blocks (about four years). The block reward is currently 25 bitcoins. Buy Bitcoin Trade. Sponsored Content. Currency Statistics. Block Details. Blockchain Size (MB) Average Block Size (MB) Average Transactions Per Block. Total Number of Transactions. Median Confirmation Time. Average Confirmation Time. Mining Information. Network Activity. Wallet Activity. Market Signals.

[index] [27307] [22654] [18501] [1696] [23084] [25489] [19911] [26630] [6718] [18549]

Bitcoin: Beyond The Bubble - Full Documentary

Thanks for watching! For donations: Bitcoin - 1CpGMM8Ag8gNYL3FffusVqEBUvHyYenTP8. Bitcoin’s maximum block capacity is 1MB, at this current time allows to process 3-7 transactions per second and implications of congested blocks, means paying high fees. Bitcoin’s cash on other... Xapo's Wences Casares, Nathaniel Popper of the New York Times, and BTCChina's Bobby Lee talk to John Biggs about the current state of Bitcoin from a tech, trust, and security standpoint. Subscribe ... Interview with Bitcoin Core Developer Luke-Jr (@LukeDashjr) Included in the conversation Gibus, MrHodl, and others. ... Must watch talk on mining, block size, and more - Duration: 55:04. Size comparison of some real space rockets. -Sources: https://en.wikipedia.org/wiki/Black_Arrow https://en.wikipedia.org/wiki/Minotaur_I https://en.wikipedia...

Flag Counter